Integral virtual fundamental chains
via finer virtual structures on moduli spaces

Dingyu Yang

Oct 6, 2017
Symplectic geometry

(M^{2m}, ω) is a symplectic manifold, if $\omega \in \Omega^2(M)$ is closed, and nondegenerate $\omega^m \neq 0$. From definitions:
Symplectic geometry

\((M^{2m}, \omega) \) is a symplectic manifold, if \(\omega \in \Omega^2(M) \) is closed, and nondegenerate \(\omega^m_x \neq 0 \). From definitions:

1. No local invariant:
 \((\mathbb{R}^{2m}, \omega_0 = dx_1 \wedge dx_2 + \cdots + dx_{2m-1} \wedge dx_{2m})\).
Symplectic geometry

\((M^{2m}, \omega)\) is a symplectic manifold, if \(\omega \in \Omega^2(M)\) is closed, and nondegenerate \(\omega^m \neq 0\). From definitions:

1. No local invariant:
 \((\mathbb{R}^{2m}, \omega_0 = dx_1 \wedge dx_2 + \cdots + dx_{2m-1} \wedge dx_{2m})\).

2. (i) Homotopically ! almost complex structure (90° rotation)
 \(J : TM \rightarrow TM\) with \(J^2 = -1\) and \(\omega(\ , J)\) Riemannian metric.

 (ii) \(u : (S, j, x) \rightarrow (M, J)\) is a \(J\)-curve, if \((du)^{0,1} = 0\).

 (iii) Counting \(J\)-curves \(u\) with markings \(x = (x_1, \cdots, x_n)\) constrained on cycles of \(M\) gives Gromov-Witten invariant.
Symplectic geometry

\((M^{2m}, \omega)\) is a symplectic manifold, if \(\omega \in \Omega^2(M)\) is closed, and nondegenerate \(\omega^m \neq 0\). From definitions:

1. No local invariant:

\[(\mathbb{R}^{2m}, \omega_0 = dx_1 \wedge dx_2 + \cdots + dx_{2m-1} \wedge dx_{2m}). \]

2. (i) Homotopically! almost complex structure (90° rotation)

\[J : TM \to TM \text{ with } J^2 = -1 \text{ and } \omega(\cdot, J \cdot) \text{ Riemannian metric.} \]

(ii) \(u : (S, j, x) \to (M, J)\) is a \(J\)-curve, if \((du)^{0,1} = 0\).

(iii) Counting \(J\)-curves \(u\) with markings \(x = (x_1, \cdots, x_n)\) constrained on cycles of \(M\) gives Gromov-Witten invariant.

3. (i) \(H : M \times \mathbb{R}/\mathbb{Z} \to \mathbb{R}\) give vector field \(X_H\) by \(dH =: \omega(X_H, \cdot)\).

(ii) Morse theory of \(A_H([x, \hat{x}]) := -\int_D \hat{x}^*\omega - \int_0^1 H(x(t), t) dt\)
gives Floer homology.

(iii) Differential counts perturbed \(J\)-cylinders, or \((J, H)\)-cylinders

\[(du - X_H \otimes dt)^{0,1} = 0.\]
Global invariants via moduli spaces, geom. transversality

Global invariants, GW invariant & Floer homology, are defined:

* Using moduli spaces \(X := \{(\text{perturbed) } J\text{-curves})/\text{symmetry} \).

* Via pulling back the evaluation map \(\text{ev} : X \to Y \), where \(Y \) is a manifold: \(M \times n \), or \(\{\text{closed orbits of } X_H \} \), respectively.

Moduli spaces are not nice spaces in the usual sense:

1. Non-regular: (McDuff:) Simple \(J \)-curves by generic \(J \).
 (Floer-Hofer-Salamon:) (\(J \), \(H \))-cylinders by generic \(t \)-dep \(H \).

2. Noncompact: \(J \)-curves can bubble off. Consider \(\{\text{nodal curves} \} \).

3. (2) \(\implies \) multiple-covers, never by perturbing structures on \(M \).

4. Domain-dep pert makes curve simple, but its compactification leads (3). Ok if (3) only happens in codim-2 (semi-positivity).

5. Divide domain-reparam sym (topology/cptness) \(X \) orbifold-based.

Outside of special cases of semi-positivity, what can we do?
Global invariants via moduli spaces, geom. transversality

Global invariants, GW invariant & Floer homology, are defined:
* Using moduli spaces $X := \{(\text{perturbed}) \ J\text{-curves}\}/\text{symmetry}.$
* Via pulling back the evaluation map $ev : X \to Y$, where Y is a manifold: $M \times n$, or $\{\text{closed orbits of } X_H\}$, respectively.

Moduli spaces are not nice spaces in the usual sense:
(1) Non-regular: (McDuff:) Simple J-curves \notin by generic J.
 (Floer-Hofer-Salamon:) (J, H)-cylinders \notin by generic t-dep H.

Global invariants via moduli spaces, geom. transversality

Global invariants, GW invariant & Floer homology, are defined:

* Using moduli spaces $X := \{(\text{perturbed}) \ J\text{-curves}\}/\text{symmetry}$.

* Via pulling back the evaluation map $ev : X \to Y$, where Y is a manifold: $M^{\times n}$, or $\{\text{closed orbits of } X_H\}$, respectively.

Moduli spaces are not nice spaces in the usual sense:

(1) Non-regular: (McDuff:) Simple J-curves $\not\pitchfork$ by generic J.

(Floer-Hofer-Salamon:) (J, H)-cylinders $\not\pitchfork$ by generic t-dep H.

(2) Noncompact: J-curves can bubble off. Consider $\{\text{nodal curves}\}$.
Global invariants via moduli spaces, geom. transversality

Global invariants, GW invariant & Floer homology, are defined:

* Using moduli spaces $X := \{(\text{perturbed}) \ J\text{-curves}\}/\text{symmetry}$.

* Via pulling back the evaluation map $ev : X \rightarrow Y$, where Y is a manifold: $M \times n$, or $\{\text{closed orbits of } X_H\}$, respectively.

Moduli spaces are not nice spaces in the usual sense:

1. Non-regular: (McDuff:) Simple J-curves $\not\in$ by generic J.
 (Floer-Hofer-Salamon:) (J, H)-cylinders $\not\in$ by generic t-dep H.
2. Noncompact: J-curves can bubble off. Consider $\{\text{nodal curves}\}$.
3. (2)\Rightarrow multiple-covers, never $\not\in$ by perturbing structures on M.

Global invariants via moduli spaces, geom. transversality

Global invariants, GW invariant & Floer homology, are defined:
* Using moduli spaces $X := \{(\text{perturbed}) \ J\text{-curves}\}/\text{symmetry}$.
* Via pulling back the evaluation map $ev : X \to Y$, where Y is a manifold: $M \times \mathbb{n}$, or $\{\text{closed orbits of} \ X_H\}$, respectively.

Moduli spaces are not nice spaces in the usual sense:
1. Non-regular: (McDuff:) Simple J-curves $\not\subset$ by generic J.
 (Floer-Hofer-Salamon:) (J, H)-cylinders $\not\subset$ by generic $t\text{-dep } H$.
2. Noncompact: J-curves can bubble off. Consider $\{\text{nodal curves}\}$.
3. (2) \Rightarrow multiple-covers, never $\not\subset$ by perturbing structures on M.
4. Domain-dep pertn makes curve simple, but its compactification leads (3). Ok if (3) only happens in codim-2 (semi-positivity).
Global invariants via moduli spaces, geom. transversality

Global invariants, GW invariant & Floer homology, are defined:
* Using moduli spaces $\mathcal{X} := \{(\text{perturbed}) J\text{-curves}\}/\text{symmetry}$.
* Via pulling back the evaluation map $\text{ev} : \mathcal{X} \to Y$, where Y is a manifold: $M \times \mathbb{R}^n$, or $\{\text{closed orbits of } X_H\}$, respectively.

Moduli spaces are not nice spaces in the usual sense:
(1) Non-regular: (McDuff:) Simple J-curves \nRightarrow by generic J.
 (Floer-Hofer-Salamon:) (J, H)-cylinders \nRightarrow by generic t-dep H.
(2) Noncompact: J-curves can bubble off. Consider $\{\text{nodal curves}\}$.
(3) (2) \Rightarrow multiple-covers, never \nRightarrow by perturbing structures on M.
(4) Domain-dep pertn makes curve simple, but its compactification leads (3). Ok if (3) only happens in codim-2 (semi-positivity).
(5) Divide domain-reparam sym (topology/cptness). \mathcal{X} orbifold-based.

Outside of special cases of semi-positivity, what can we do?
Abstract transversality

One major approach is abstract perturbation:
Abstract transversality

One major approach is abstract perturbation:
* Polyfold approach (Hofer-Wysocki-Zehnder, ...)
 (a) From a space B of all candidates, $\{ J\text{-curves}\}/\text{iso}$ is cut out by a section f of Fredholm nature in a bundle $\mathcal{E} \to B$.
 (b) Brand new smoothness, local models (of jumping dimensions), and local implicit function theorem.
 (c) Easily globalize: patch over diffeos, usual genericity argument.

* Kuranishi-type approach (By early 2014, Fukaya-Oh-Ohta-Ono, Joyce, McDuff-Wehrheim, Pardon, Y., ...)
 (a) (Easy local model) X locally cut out by a section s in a f.d. bdle.
 (b) Coordinate change can increase dimension. \Rightarrow No precompact open neighborhood of patched zero sets in patched ambient bases.
 (c) Global topological/algebraic solution for (b), when charts patch.

As of Oct 5, 2017, the output from the above is a virtual fund.

chain/cycle over \mathbb{Q}, which is a regular replacement of bad compact zero set $f^{-1}(0)$ or $\bigcup s^{-1}(0)$.

\bigcup is the patching identification.

Because the symmetry and transversality don't get along \Rightarrow Need symmetric \mathbb{Q}-weighted branchwise multi-sections, or equiv.
Abstract transversality

One major approach is abstract perturbation:

* Polyfold approach (Hofer-Wysocki-Zehnder, ...)
 (a) From a space \(B \) of all candidates, \(\{ J\text{-curves}\}/\text{iso} \) is cut out by a section \(f \) of Fredholm nature in a bundle \(E \to B \).
 (b) Brand new smoothness, local models (of jumping dimensions), and local implicit function theorem.
 (c) Easily globalize: patch over diffeos, usual genericity argument.

* Kuranishi-type approach (By early 2014, Fukaya-Oh-Ohta-Ono, Joyce, McDuff-Wehrheim, Pardon, Y., ...)
 (a) (Easy local model) \(X \) locally cut out by a section \(s_I \) in a f.d. bdle.
 (b) Coordinate change can increase dimension. \(\Rightarrow \) No precompact open neighborhood of patched zero sets in patched ambient bases.
 (c) Global topological/algebraic solution for (b), when charts patch.
Abstract transversality

One major approach is abstract perturbation:

* **Polyfold approach** (Hofer-Wysocki-Zehnder, ...)

 (a) From a space \mathcal{B} of all candidates, $\{J\text{-curves}\}$/iso is cut out by a section f of Fredholm nature in a bundle $\mathcal{E} \to \mathcal{B}$.

 (b) Brand new smoothness, local models (of jumping dimensions), and local implicit function theorem.

 (c) Easily globalize: patch over diffeos, usual genericity argument.

* **Kuranishi-type approach** (By early 2014, Fukaya-Oh-Ohta-Ono, Joyce, McDuff-Wehrheim, Pardon, Y., ...)

 (a) (Easy local model) X locally cut out by a section s_i in a f.d. bdle.

 (b) Coordinate change can increase dimension. \implies No precompact open neighborhood of patched zero sets in patched ambient bases.

 (c) Global topological/algebraic solution for (b), when charts patch.

As of Oct 5, 2017, the output from the above is a virtual fund. chain/cycle over \mathbb{Q}, which is a regular replacement of bad compact zero set $f^{-1}(0)$ or $\bigsqcup_i s_i^{-1}(0)/\gamma$. γ is the patching identification. Because the symmetry and transversality don’t get along \implies Need symmetric \mathbb{Q}-weighted branchwise \amalg multi-sections, or equiv.
Integral virtual fundamental chains (joint w/ Guangbo Xu)

Example: 2-sphere S w/ an orbifold point $\{z\} := S^{\mathbb{Z}_3}$ of symm. \mathbb{Z}_3.

1. It fits as a special case of the previous polyfold/Kuranishi theories, and it is already regular and no room in the 0-bundle to do much else (like perturbation). Euler char. rational.

2. But we know it has no hole, whose information can be captured, and indeed, $S\setminus\{z\}$ is a pseudocycle, and we count 2 for this “virtual” (pseudo-)cycle.

3. The subspace of points with nontrivial stabilizers being of codimension 2 (in the base) is not enough: We still need to regularize, and face incompatibility of symm. & transversality.

4. Another aspect is that the normal bundle $N_{S^{\mathbb{Z}_3}}S$ has a complex structure in this example, which generalizes.
A good coordinate system GCS (of 2 charts)

Any Kuranishi-type theory, you can get a finitely many charts covering moduli X, a good coordinate system. Consider 2 charts (4 generalizes). $C_I := (s_I : U_I \to E_I, \psi_I : s_I^{-1}(0)/\Gamma_I \to X; \Gamma_I}$ and one for J.
A good coordinate system GCS (of 2 charts)

Any Kuranishi-type theory, you can get a finitely many charts covering moduli X, a good coordinate system. Consider 2 charts (4 generalizes).

$C_I := (s_I : U_I \to E_I, \psi_I : s_I^{-1}(0)/\Gamma_I \to X; \Gamma_I)$ and one for J.

A coordinate change $C_I \to C_J$ says:

(2) (Enough) open part $C_I|_{U_{JI}}$ of C_I embeds in C_J, intertwining all the data. So $s_I|_{U_{JI}}$ sits in as part of s_J. Images denoted by $\tilde{\cdot}$.

(2) U_J can have larger dimension. The extra direction is ‘cancelled out’ by ds_J matching normals of \tilde{U}_{JI} in U_J with fiber normals of \tilde{E}_I in E_J”, a canonical condition at zeros $s_J|_{\tilde{U}_{JI}}$.
A good coordinate system GCS (of 2 charts)

Any Kuranishi-type theory, you can get a finitely many charts covering moduli X, a good coordinate system. Consider 2 charts (4 generalizes).

$$C_I := (s_I : U_I \to E_I, \psi_I : s_I^{-1}(0)/\Gamma_I \to X; \Gamma_I)$$

and one for J.

A coordinate change $C_I \to C_J$ says:

(2) (Enough) open part $C_I|_{U_{JI}}$ of C_I embeds in C_J, intertwining all the data. So $s_I|_{U_{JI}}$ sits in as part of s_J. Images denoted by $\tilde{\cdot}$.

(2) U_J can have larger dimension. The extra direction is ‘cancelled out’ by ds_J matching normals of \tilde{U}_{JI} in U_J with fiber normals of \tilde{E}_I in E_J”, a canonical condition at zeros $s_J|_{\tilde{U}_{JI}}$.

One way to go up dimension is by improving (2) into condition over W_{JI}, a tubular neighborhood projecting onto \tilde{U}_{JI} (remembering the fiber linear structure, containing no extra zeros), and extend \tilde{E}_J to \tilde{E}_{JI} over W_{JI}, and asking $s_J|_{W_{JI}}/\tilde{E}_{JI} \pitchfork 0$. A \pitchfork perturbation of s_I is immediately lifted to a \pitchfork perturbation over W_{JI}. After things are in the same setting in E_J, one can use relative tranversality.
A good coordinate system GCS (of 2 charts)

Any Kuranishi-type theory, you can get a finitely many charts covering moduli \(X \), a good coordinate system. Consider 2 charts (4 generalizes).

\[
C_I := (s_I : U_I \to E_I, \psi_I : s_I^{-1}(0)/\Gamma_I \to X; \Gamma_I) \text{ and one for } J.
\]

A coordinate change \(C_I \to C_J \) says:

1. (Enough) open part \(C_I|_{U_{JI}} \) of \(C_I \) embeds in \(C_J \), intertwining all the data. So \(s_I|_{U_{JI}} \) sits in as part of \(s_J \). Images denoted by \(\tilde{\cdot} \).

2. \(U_J \) can have larger dimension. The extra direction is ‘cancelled out’ by \(ds_J \) matching normals of \(\tilde{U}_{JI} \) in \(U_J \) with fiber normals of \(\tilde{E}_I \) in \(E_J \), a canonical condition at zeros \(s_J|_{\tilde{U}_{JI}} \).

One way to go up dimension is by improving (2) into condition over \(W_{JI} \), a tubular neighborhood projecting onto \(\tilde{U}_{JI} \) (remembering the fiber linear structure, containing no extra zeros), and extend \(\tilde{E}_J \) to \(\tilde{E}_{JI} \) over \(W_{JI} \), and asking \(s_J|_{W_{JI}}/\tilde{E}_{JI} \ni 0 \). A \(\ni \) perturbation of \(s_I \) is immediately lifted to a \(\ni \) perturbation over \(W_{JI} \). After things are in the same setting in \(E_J \), one can use relative transversality.

Theorem (Y., Feb 2014)

Can do it globally on GCS via \(\exists \) (! up to refinem’t) of level-1 str.
Between two group-fixed parts in a chart

After considering dimension changes, we focus on group changes.
Between two group-fixed parts in a chart

After considering dimension changes, we focus on **group changes**.

Fix a chart $C := C_I$ and the group action Γ is effective.

$L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

Between two group-fixed parts in a chart

After considering dimension changes, we focus on group changes. Fix a chart $C := C_I$ and the group action Γ is effective.

$L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

* $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.
Between two group-fixed parts in a chart

After considering dimension changes, we focus on group changes. Fix a chart $C := C_I$ and the group action Γ is effective. $L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

* $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.
* Suppose normal bundle N of U^H in U^L, and also normal bundle \tilde{N} of E^H in $E^L|_{U^H}$ both have complex structures.
Between two group-fixed parts in a chart

After considering dimension changes, we focus on group changes. Fix a chart $C := C_I$ and the group action Γ is effective. $L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

* $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.

* Suppose normal bundle N of U^H in U^L, and also normal bundle \tilde{N} of E^H in $E^L|_{U^H}$ both have complex structures.

* $s|_{U^L}$ has two part: $s|_{U^H}$ lifted to $W^{LH} \subset U^L$ near U^H as last page, but also the normal part s which is a map $N \to \tilde{N}$ over U^H between \mathbb{C} bundles. Group is $G := \Gamma^L/L$ with Γ^L normalizer of L.

Between two group-fixed parts in a chart

After considering dimension changes, we focus on group changes. Fix a chart $C := C_I$ and the group action Γ is effective.

$L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

* $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.

* Suppose normal bundle N of U^H in U^L, and also normal bundle \tilde{N} of E^H in $E^L|_{U^H}$ both have complex structures.

* $s|_{U^L}$ has two part: $s|_{U^H}$ lifted to $W^{LH} \subset U^L$ near U^H as last page, but also the normal part \tilde{s} which is a map $N \to \tilde{N}$ over U^H between C bundles. Group is $G := \Gamma^L/L$ with Γ^L normalizer of L.

* ('99 Fukaya-Ono, for 1 chart, 2 groups H and $L = \{\text{Id}\}$, $G = \Gamma$) s can be fiberwise G-equivariant C-polynomially perturbed s.t. over N^{free}, G-free part, transversality can be achieved. When virtual $\text{dim} \leq 1$, for “generic” such perturbation \tilde{s}, G-free part of zero set $\tilde{s}^{-1}(0)$ is a manifold and closed (does not meet U^H).
Between two group-fixed parts in a chart

After considering dimension changes, we focus on group changes. Fix a chart \(C := C_I \) and the group action \(\Gamma \) is effective. \(L < H < \Gamma_I \) subgroups. \(U^H \) fixed by \(H \). Thus \(U^H \subset U^L \).

* \(C|_{U^H} \rightarrow C|_{U^L} \) is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.

* Suppose normal bundle \(N \) of \(U^H \) in \(U^L \), and also normal bundle \(\tilde{N} \) of \(E^H \) in \(E^L|_{U^H} \) both have complex structures.

* \(s|_{U^L} \) has two part: \(s|_{U^H} \) lifted to \(W^{LH} \subset U^L \) near \(U^H \) as last page, but also the normal part \(s \) which is a map \(N \rightarrow \tilde{N} \) over \(U^H \) between \(\mathbb{C} \) bundles. Group is \(G := \Gamma^L/L \) with \(\Gamma^L \) normalizer of \(L \).

* (’99 Fukaya-Ono, for 1 chart, 2 groups \(H \) and \(L = \{\text{Id}\} \), \(G = \Gamma \)) \(s \) can be fiberwise \(G \)-equivariant \(\mathbb{C} \)-polynomially perturbed s.t. over \(N^{\text{free}} \), \(G \)-free part, transversality can be achieved. When virtual \(\text{dim} \leq 1 \), for “generic” such perturbation \(\tilde{s} \), \(G \)-free part of zero set \(\tilde{s}^{-1}(0) \) is a manifold and closed (does not meet \(U^H \)). We improve this to the whole GCS covering moduli space \(X \), prove vastly strengthened statements below for all virtual dims.
Integral virtual fundamental chains/pseudocycles

Need notion of compatible structure involving $W_{jL}^H \to U_{jL}^H$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J}.

Theorem (Guangbo Xu - Y.)

* Given a group-normal complex \mathcal{J}, a \mathcal{J}-compatible group-normal structure exists, up to cobordism/refinement.

* ∃(! up to cob) a single-valued equivariant fiberwise polynomial perturbation \(\{\tilde{s}_I\} \) with zero set \(\tilde{X} := \bigsqcup_I \tilde{s}_I - 1(0) / \bigcup \), s.t. space \(\hat{\tilde{X}}[L] \) of points with exact $[L]$-stabilizers is a manifold (with compactification \(\hat{\tilde{X}}[L] \)), \(\tilde{X}[L] \setminus \hat{\tilde{X}}[L] \) has codim $R \geq 2$ (even) and is covered by maps from manifolds fibering over \(\hat{\tilde{X}}[H] \) for all $L \leq H$ (up to conj. & ident.).

* "Floer chain"- and GW-moduli spaces for general symplectic manifolds have group-normal complex str. \mathcal{J}, up to quasi-iso/cob.

* Using the stabilizer-free moduli spaces $\hat{\tilde{X}}[\{Id\}]$ with $L = \{Id\}$, the \mathbb{Z}-VFC, Floer homology and GW are well-defined over \mathbb{Z}.

Integral virtual fundamental chains/pseudocycles

Need notion of compatible structure involving $W_{jlH} \rightarrow U_{jlH}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J}.

Theorem (Guangbo Xu - Y.)

* Given a group-normal complex \mathcal{J}, a \mathcal{J}-compatible group-normal structure exists, ! up to cobordism/refinement.
Integral virtual fundamental chains/pseudocycles

Need notion of compatible structure involving $W_{JI}^{LH} \to U_{JI}^{LH}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J}.

Theorem (Guangbo Xu - Y.)

* Given a group-normal complex \mathcal{J}, a \mathcal{J}-compatible group-normal structure exists, $!$ up to cobordism/refinement.

* \exists (! up to cob) a single-valued equivariant fiberwise polyn. pertn $\{\tilde{s}_I\}_I$ with zero set $\tilde{X} := \bigsqcup_I \tilde{s}_I^{-1}(0)/\gamma$, s.t. space $\hat{X}^{[L]}$ of points with exact $[L]$-stabilizers is a manifold (with compactification $\tilde{X}^{[L]}$), $\tilde{X}^{[L]} \setminus \hat{X}^{[L]}$ has codim$_\mathbb{R} \geq 2$ (even) and is covered by maps from manifolds fibering over $\hat{X}^{[H]}$ for all $L \preceq H$ (up to conj. & ident.)
Integral virtual fundamental chains/pseudocycles

Need notion of compatible structure involving $W_{J_L^H} \to U_{J_L^H}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J}.

Theorem (Guangbo Xu - Y.)

* Given a group-normal complex \mathcal{J}, a \mathcal{J}-compatible group-normal structure exists, ! up to cobordism/refinement.

* \exists (! up to cob) a single-valued equivariant fiberwise polyn. pertn $\{\tilde{s}_I\}_I$ with zero set $\tilde{X} := \bigsqcup_I \tilde{s}_I^{-1}(0)/\gamma$, s.t. space $\hat{X}^{[L]}$ of points with exact $[L]$-stabilizers is a manifold (with compactification $\tilde{X}^{[L]}$), $\tilde{X}^{[L]} \setminus \hat{X}^{[L]}$ has $\text{codim}_\mathbb{R} \geq 2$ (even) and is covered by maps from manifolds fibering over $\hat{X}^{[H]}$ for all $L \preceq H$ (up to conj. & ident.)

* “Floer chain”- and GW-moduli spaces for general symplectic mflds have group-normal complex str. \mathcal{J}, ! up to quasi-iso/cob.
Integral virtual fundamental chains/pseudocycles

Need notion of compatible structure involving $W_{ji}^{LH} \rightarrow U_{ji}^{LH}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J}.

Theorem (Guangbo Xu - Y.)

* Given a group-normal complex \mathcal{J}, a \mathcal{J}-compatible group-normal structure exists, ! up to cobordism/refinement.

* \exists (! up to cob) a single-valued equivariant fiberwise polyn. pertn $\{\tilde{s}_I\}_I$ with zero set $\tilde{X} := \bigsqcup_I \tilde{s}_I^{-1}(0)/\gamma$, s.t. space $\hat{X}[L]$ of points with exact [L]-stabilizers is a manifold (with compactification $\tilde{X}[L]$), $\tilde{X}[L] \setminus \hat{X}[L]$ has codim$_{\mathbb{R}} \geq 2$ (even) and is covered by maps from manifolds fibering over $\hat{X}[H]$ for all $L \leq H$ (up to conj. & ident.)

* “Floer chain”- and GW-moduli spaces for general symplectic mfllds have group-normal complex str. \mathcal{J}, ! up to quasi-iso/cob.

* Using the stabilizer-free moduli spaces $\hat{X}[[\text{Id}]]$ with $L = \{ \text{Id} \}$, the \mathbb{Z}-VFC, Floer homology and GW are well-defined over \mathbb{Z}.

Some further directions

Other part worth exploring:

1. How to make use of $\tilde{M}^{[L]}$ for other groups $[L]$ with $L \neq \{Id\}$. Maybe use pseudocycle stratification to relate to homotopy quotient defined using universal family-dependent J in certain situations.

2. Since multiple branch-covers can be stabilizer-free, so integral GW (defined for all, not just for CY3) is not GV. What is the geometric meaning on the curve counting side?

3. Define \mathbb{Z}_p-version of equivariant p-products, p prime, possibly encoding quantum chain-level commutativity.
Some further directions

Other part worth exploring:

1. How to make use of $\hat{\mathcal{M}}[L]$ for other groups $[L]$ with $L \neq \{Id\}$. Maybe use pseudocycle stratification to relate to homotopy quotient defined using universal family-dependent J in certain situations.

2. Since multiple branch-covers can be stabilizer-free, so integral GW (defined for all, not just for CY3) is not GV. What is the geometric meaning on the curve counting side?

3. Define \mathbb{Z}_p-version of equivariant p-products, p prime, possibly encoding quantum chain-level commutativity.

4. Do it for SFT, relative(/Leg.) SFT, and LG.

5. Use forgetful functor ($Y.$), one gets a polyfold version, but one should be able to directly with some simplification (soon).
Some further directions

Other part worth exploring:

1. How to make use of $\hat{M}^[[L]]$ for other groups $[L]$ with $L \neq \{Id\}$. Maybe use pseudocycle stratification to relate to homotopy quotient defined using universal family-dependent J in certain situations.

2. Since multiple branch-covers can be stabilizer-free, so integral GW (defined for all, not just for CY3) is not GV. What is the geometric meaning on the curve counting side?

3. Define \mathbb{Z}_p-version of equivariant p-products, p prime, possibly encoding quantum chain-level commutativity.

4. Do it for SFT, relative(/Leg.) SFT, and LG.

5. Use forgetful functor (Y.), one gets a polyfold version, but one should be able to directly with some simplification (soon).

6. Find alternative condition (to group-normal complex) applicable to other moduli spaces of geometric PDE.
Thank you!