A Tight Bound for Hypergraph Regularity

Guy Moshkovitz

Harvard University

Joint work with Asaf Shapira
One of the most powerful tools in extremal combinatorics
One of the most powerful tools in extremal combinatorics
–with applications in CS, Number Theory, Geometry, and more.
One of the most powerful tools in extremal combinatorics—\textit{with} applications in CS, Number Theory, Geometry, and more.

\textbf{Theorem (Graph regularity lemma (informal), Szemerédi ’78)}

\textit{The vertex set of every graph can be partitioned into a bounded number of parts such that almost all the bipartite graphs induced by pairs of parts in the partition are ϵ-quasirandom.}
The Graph Regularity Lemma

One of the most powerful tools in extremal combinatorics—with applications in CS, Number Theory, Geometry, and more.

Theorem (Graph regularity lemma (informal), Szemerédi ’78)

The vertex set of every graph can be partitioned into a bounded number of parts such that almost all the bipartite graphs induced by pairs of parts in the partition are \(\epsilon \)-quasirandom.

![Diagram of a graph and its partition](image)
Early applications:

- Tight bound for Ramsey-Turán problem for K_4 [Szemerédi ’72]
Early applications:

- Tight bound for Ramsey-Turán problem for K_4 [Szemerédi ’72]
- Triangle Removal Lemma [Ruzsa-Szemerédi ’76]
Graph Regularity Lemma – Applications

Early applications:

- Tight bound for Ramsey-Turán problem for K_4 [Szemerédi ’72]
- Triangle Removal Lemma [Ruzsa-Szemerédi ’76]
- Tight bound for Erdős-Stone theorem [Chvátal-Szemerédi ’81]
Early applications:

- Tight bound for Ramsey-Turán problem for K_4 [Szemerédi ’72]
- Triangle Removal Lemma [Ruzsa-Szemerédi ’76]
- Tight bound for Erdős-Stone theorem [Chvátal-Szemerédi ’81]
- The number of H-free graphs [Erdős-Frankl-Rödl ’86]
The Asymptotic Number of Graphs not Containing a Fixed Subgraph and a Problem for Hypergraphs Having No Exponent

P. Erdős¹, P. Frankl² and V. Rödl³

¹ Mathematical Institute of the Hungarian Academy of Science, P.O.B. 127, 1364 Budapest, Hungary
² CNRS, Quai Anatole France, 75007, Paris, France
³ Department of Mathematics, FJFI, ČVUT, Husova 5, 11000 Praha 1, Czechoslovakia, and AT&T Bell Laboratories, Murray Hill, NJ 07974, USA
The Asymptotic Number of Graphs not Containing a Fixed Subgraph and a Problem for Hypergraphs Having No Exponent

P. Erdős¹, P. Frankl² and V. Rödl³

¹ Mathematical Institute of the Hungarian Academy of Science, P.O.B. 127, 1364 Budapest, Hungary
² CNRS, Quai Anatole France, 75007, Paris, France
³ Department of Mathematics, FJFI, ČVUT, Husova 5, 11000 Praha 1, Czechoslovakia, and AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

Problem 6.1. Suppose \(H \) is a \(K_{t}(l,r) \)-free \(r \)-uniform hypergraph on \(n \) vertices, \(t > r \). Let \(\varepsilon \) be an arbitrarily small positive real \(n > n_{0}(\varepsilon, r, t, l) \). Is it possible to remove \(r \) edges from \(H \) so that the remaining hypergraph is \(K_{t}(r) \)-free?
The Asymptotic Number of Graphs not Containing a Fixed Subgraph and a Problem for Hypergraphs Having No Exponent

P. Erdős¹, P. Frankl² and V. Rödl³

¹ Mathematical Institute of the Hungarian Academy of Science, P.O.B. 127, 1364 Budapest, Hungary
² CNRS, Quai Anatole France, 75007, Paris, France
³ Department of Mathematics, FJFI, ČVUT, Husova 5, 11000 Praha 1, Czechoslovakia, and AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

...

Problem 6.1. Suppose H is a $K_t(l,r)$-free r-uniform hypergraph on n vertices, $t > r$. Let ε be an arbitrarily small positive real $n > n_0(\varepsilon, r, t, l)$. Is it possible to remove en^r edges from H so that the remaining hypergraph is $K_t(r)$-free?

...

Remark added in proof. Problem 6.1 has been recently positively answered by P. Frankl and V. Rödl. The proof uses an extension of Szemerédi’s regularity lemma to hypergraphs.
20 Years Later... The Hypergraph Regularity Lemma

The main difficulty
Which notion of regularity/quasirandomness to use?
Should: 1. hold for all hypergraphs & 2. have a counting lemma

Theorem (Triangle Counting Lemma)
If G is an $n \times n \times n$ tripartite graph whose 3 bipartite graphs are ϵ-regular of densities α, β, γ then the number of triangles in G is $(\alpha \beta \gamma \pm 7 \epsilon) n^3$.

Guy Moshkovitz (Harvard University)
The main difficulty
Which notion of regularity/quasirandomness to use?
The main difficulty

Which notion of regularity/quasirandomness to use?
Should: 1. hold for all hypergraphs & 2. have a counting lemma
The main difficulty

Which notion of regularity/quasirandomness to use?
Should: 1. hold for all hypergraphs & 2. have a counting lemma

Theorem (Triangle Counting Lemma)

If G is an $n \times n \times n$ tripartite graph whose 3 bipartite graphs are ϵ-regular of densities α, β, γ then the number of triangles in G is $(\alpha \beta \gamma \pm 7 \epsilon)n^3$.
The naive definition of 3-graph regularity does not have a counting lemma—not even a $K_4^{(3)}$-counting lemma!
Bad Example

The naive definition of 3-graph regularity does not have a counting lemma—not even a $K_{4}^{(3)}$-counting lemma!

Example

There is a 4-partite 3-graph which is $K_{4}^{(3)}$-free even though each of the 4 triples of vertex classes is $o(1)$-regular:

- Let T be a balanced 4-partite random tournament (where the direction of each xy is chosen independently and uniformly).
The naive definition of 3-graph regularity does not have a counting lemma—not even a $K_4^{(3)}$-counting lemma!

Example

There is a 4-partite 3-graph which is $K_4^{(3)}$-free even though each of the 4 triples of vertex classes is $o(1)$-regular:

- Let T be a balanced 4-partite random tournament (where the direction of each xy is chosen independently and uniformly).
- Let H be the 4-partite 3-graph where xyz is an edge if it forms a directed cycle in T.
The naive definition of 3-graph regularity does not have a counting lemma—not even a $K_4^{(3)}$-counting lemma!

Example

There is a 4-partite 3-graph which is $K_4^{(3)}$-free even though each of the 4 triples of vertex classes is $o(1)$-regular:

- Let T be a balanced 4-partite random tournament (where the direction of each xy is chosen independently and uniformly).
- Let H be the 4-partite 3-graph where xyz is an edge if it forms a directed cycle in T.
- Thus, each xyz forms an edge in H with probability $1/4$, and each of the 4 triples of vertex classes of H is $o(1)$-regular.
The naive definition of 3-graph regularity does not have a counting lemma—not even a $K_4^{(3)}$-counting lemma!

Example

There is a 4-partite 3-graph which is $K_4^{(3)}$-free even though each of the 4 triples of vertex classes is $o(1)$-regular:

- Let T be a balanced 4-partite random tournament (where the direction of each xy is chosen independently and uniformly).
- Let H be the 4-partite 3-graph where xyz is an edge if it forms a directed cycle in T.
- Thus, each xyz forms an edge in H with probability $1/4$, and each of the 4 triples of vertex classes of H is $o(1)$-regular.
- It is easy to see that H is $K_4^{(3)}$-free.
Different versions of hypergraph regularity were proved by:
 - Frankl-Rödl '02, Rödl-Skopenkova '04, Nagle-Rödl-Schacht '06
 - Gowers '07
 - Tao '06
 - Rödl-Schacht '07

Remark [Chung-Graham-Wilson '89]
In graphs, discrepancy, codegree, eigenvalues, ... are poly-equivalent.
Different versions of hypergraph regularity were proved by:

- Frankl-Rödl '02, Rödl-Skoken '04, Nagle-Rödl-Schacht '06
- Gowers '07
- Tao '06
- Rödl-Schacht '07

These are not known to be qualitatively (let alone quantitatively) equivalent.
Different versions of hypergraph regularity were proved by:

- Frankl-Rödl ’02, Rödl-Skokan ’04, Nagle-Rödl-Schacht ’06
- Gowers ’07
- Tao ’06
- Rödl-Schacht ’07

These are not known to be qualitatively (let alone quantitatively) equivalent.

Remark [Chung-Graham-Wilson ’89]

In graphs, discrepancy, codegree, eigenvalues,... are poly-equivalent.
Upper Bounds for Hypergraph Regularity

Common to all known proofs of the k-graph regularity lemma – their bound grows like Ack_k, the level-k Ackermann function:
Upper Bounds for Hypergraph Regularity

Common to all known proofs of the k-graph regularity lemma – their bound grows like Ack_k, the level-k Ackermann function:

- $\text{Ack}_1(n) = 2^n$
- $\text{Ack}_2(n) = T(n) = 2 \cdot 2 \cdot \ldots \cdot 2 \brace n \text{ times}$
- $\text{Ack}_3(n) = W(n) = T(\cdots (T(1)) \cdots) \quad (n \text{ compositions})$
- $\text{Ack}_4(n) = \ldots$
Detour: Applications

Original motivation—a combinatorial proof of Szemerédi’s Theorem:

Theorem (Szemerédi ’74)
\[
\forall \delta > 0, \ k \in \mathbb{N} \ \exists N = N(\delta, k):
\forall A \subseteq [N], \text{ if } |A| \geq \delta N \text{ then } A \text{ contains a } k\text{-term AP.}
\]
Original motivation—a combinatorial proof of Szemerédi’s Theorem:

Theorem (Szemerédi ’74)

\[\forall \delta > 0, \ k \in \mathbb{N} \ \exists N = N(\delta, k): \]

\[\forall A \subseteq [N], \text{ if } |A| \geq \delta N \text{ then } A \text{ contains a } k\text{-term AP}. \]

- The case of 3-APs (Roth’s Theorem) follows from graph regularity.
Detour: Applications

Original motivation—a combinatorial proof of Szemerédi’s Theorem:

Theorem (Szemerédi ’74)

\[\forall \delta > 0, k \in \mathbb{N} \exists N = N(\delta, k) : \forall A \subseteq [N], \text{ if } |A| \geq \delta N \text{ then } A \text{ contains a } k \text{-term AP.} \]

- The case of 3-APs (Roth’s Theorem) follows from graph regularity.
 - 1. Reduce Roth’s Theorem to graph removal lemma.
Detour: Applications

Original motivation—a combinatorial proof of Szemerédi’s Theorem:

Theorem (Szemerédi ’74)

\[\forall \delta > 0, \ k \in \mathbb{N} \ \exists N = N(\delta, k): \forall A \subseteq [N], \text{ if } |A| \geq \delta N \text{ then } A \text{ contains a } k\text{-term AP.} \]

- The case of 3-APs (Roth’s Theorem) follows from graph regularity.
 - 1. Reduce Roth’s Theorem to graph removal lemma.
- The case of \(k \)-APs follows from \((k - 1)\)-graph regularity.
Detour: Applications

Original motivation—a combinatorial proof of Szemerédi’s Theorem:

Theorem (Szemerédi ’74)
\[
\forall \delta > 0, \ k \in \mathbb{N} \ \exists N = N(\delta, k):
\forall A \subseteq [N], \text{ if } |A| \geq \delta N \text{ then } A \text{ contains a } k\text{-term AP.}
\]

- The case of 3-APs (Roth’s Theorem) follows from graph regularity.
 - 1. Reduce Roth’s Theorem to graph removal lemma.
- The case of \(k\)-APs follows from \((k - 1)\)-graph regularity.
 - 1. Reduce Szemeredi’s Theorem to hypergraph removal lemma.
Perhaps most important application–Multidimensional Szemerédi’s Theorem:

\[
\forall \delta > 0, d \in \mathbb{N}, X \subseteq \mathbb{Z}^d \exists N = N(\delta, d, X) : \\
\forall A \subseteq [N]^d, \text{if } |A| \geq \delta N^d \text{ then } A \supseteq a + cX \text{ for some } a \in \mathbb{Z}^d, c \in \mathbb{N}.
\]

▶ Original proof uses ergodic theory, relies on Axiom of Choice.
▶ Only proof giving bounds relies on the hypergraph regularity lemma.

Fact
Improving upper bound for hypergraph regularity from $\text{Ack}k$ to $\text{Ack}k_0$ ⇒ first primitive recursive bound for Multidimensional Szemerédi’s Theorem.

▶ Obtaining such bounds for van der Waerden’s and Szemerédi’s Theorems (two special cases) were open problems for many decades (until solved by Shelah [JAMS ’89] and Gowers [GAFA ’01] respectively).
Perhaps most important application—Multidimensional Szemerédi’s Theorem:

Theorem (Furstenberg-Katznelson ’78)

\[\forall \delta > 0, \ d \in \mathbb{N}, \ X \subseteq \mathbb{Z}^d \ \exists N = N(\delta, d, X) : \]
\[\forall A \subseteq [N]^d, \text{ if } |A| \geq \delta N^d \text{ then } A \supseteq a + cX \text{ for some } a \in \mathbb{Z}^d, c \in \mathbb{N}. \]
Applications - cont.

Perhaps most important application—Multidimensional Szemerédi’s Theorem:

Theorem (Furstenberg-Katznelson ’78)

\[\forall \delta > 0, \ d \in \mathbb{N}, \ X \subseteq \mathbb{Z}^d \ \exists N = N(\delta, d, X): \]

\[\forall A \subseteq [N]^d, \text{ if } |A| \geq \delta N^d \ \text{ then } A \supseteq a + cX \text{ for some } a \in \mathbb{Z}^d, c \in \mathbb{N}. \]

- Original proof uses ergodic theory, relies on Axiom of Choice.
Perhaps most important application—Multidimensional Szemerédi’s Theorem:

Theorem (Furstenberg-Katznelson ’78)

\[\forall \delta > 0, \ d \in \mathbb{N}, \ X \subseteq \mathbb{Z}^d \ \exists N = N(\delta, d, X): \]
\[\forall A \subseteq [N]^d, \ |A| \geq \delta N^d \text{ then } A \supseteq a + cX \text{ for some } a \in \mathbb{Z}^d, \ c \in \mathbb{N}. \]

- Original proof uses ergodic theory, relies on Axiom of Choice.
- Only proof giving bounds relies on the hypergraph regularity lemma.
Perhaps most important application—Multidimensional Szemerédi’s Theorem:

Theorem (Furstenberg-Katznelson ’78)

\[\forall \delta > 0, \ d \in \mathbb{N}, \ X \subseteq \mathbb{Z}^d \ \exists N = N(\delta, d, X): \]
\[\forall A \subseteq [N]^d, \ \text{if} \ |A| \geq \delta N^d \ \text{then} \ A \supseteq a + cX \ \text{for some} \ a \in \mathbb{Z}^d, \ c \in \mathbb{N}. \]

- Original proof uses ergodic theory, relies on Axiom of Choice.
- Only proof giving bounds relies on the hypergraph regularity lemma.

Fact

Improving upper bound for hypergraph regularity from \(\text{Ack}_k \) to \(\text{Ack}_{k_0} \) \(\Rightarrow \) first primitive recursive bound for Multidimensional Szemerédi’s Theorem.
Perhaps most important application—Multidimensional Szemerédi’s Theorem:

Theorem (Furstenberg-Katznelson ’78)

\[
\forall \delta > 0, \ d \in \mathbb{N}, \ X \subseteq \mathbb{Z}^d \ \exists N = N(\delta, d, X): \forall A \subseteq [N]^d, \text{ if } |A| \geq \delta N^d \text{ then } A \supseteq a + cX \text{ for some } a \in \mathbb{Z}^d, c \in \mathbb{N}.
\]

- Original proof uses ergodic theory, relies on Axiom of Choice.
- Only proof giving bounds relies on the hypergraph regularity lemma.

Fact

Improving upper bound for hypergraph regularity from Ack_\ k to Ack_{k_0} \Rightarrow first primitive recursive bound for Multidimensional Szemerédi’s Theorem.

- Obtaining such bounds for van der Waerden’s and Szemerédi’s Theorems (two special cases) were open problems for many decades (until solved by Shelah [JAMS ’89] and Gowers [GAFA ’01] respectively).
Theorem (Gowers '97)

Tower-type bounds are unavoidable for graph regularity.
Theorem (Gowers ’97)

Tower-type bounds are unavoidable for graph regularity.

[Tao ’06] predicted Ack_k-type bounds are unavoidable for k-graph regularity.
Lower Bounds for Hypergraph Regularity

Theorem (Gowers ’97)

Tower-type bounds are unavoidable for graph regularity.

[Tao ’06] predicted Ack$_k$-type bounds are unavoidable for k-graph regularity.

Theorem (Main result (informal), M.-Shapira ’18+)

*Ack$_k$-type bounds are unavoidable for k-graph regularity, for all $k \geq 2$.***
Lower Bounds for Hypergraph Regularity

Theorem (Gowers ’97)

Tower-type bounds are unavoidable for graph regularity.

[Tao ’06] predicted Ack$_k$-type bounds are unavoidable for k-graph regularity.

Theorem (Main result (informal), M.-Shapira ’18+)

Ack$_k$-type bounds are unavoidable for k-graph regularity, for all $k \geq 2.$

In fact, we prove this lower bound for a new notion of regularity which, compared to previous notions, is:

- Weaker. (In fact, strictly weaker.)
- Simpler: No need for an elaborate hierarchy of parameters that controls how regular one level of the partition is compared to the previous one. (In fact, it has almost nothing to do with hypergraphs!)
Theorem (Gowers ’97)

Tower-type bounds are unavoidable for graph regularity.

[Tao ’06] predicted Ack\(_k\)-type bounds are unavoidable for \(k\)-graph regularity.

Theorem (Main result (informal), M.-Shapira ’18+)

Ack\(_k\)-type bounds are unavoidable for \(k\)-graph regularity, for all \(k \geq 2\).

In fact, we prove this lower bound for a new notion of regularity which, compared to previous notions, is:

▶ Weaker. (In fact, strictly weaker.)
Theorem (Gowers ’97)

Tower-type bounds are unavoidable for graph regularity.

[Tao ’06] predicted Ack$_k$-type bounds are unavoidable for k-graph regularity.

Theorem (Main result (informal), M.-Shapira ’18+)

Ack$_k$-type bounds are unavoidable for k-graph regularity, for all $k \geq 2$.

In fact, we prove this lower bound for a new notion of regularity which, compared to previous notions, is:

- Weaker. (In fact, strictly weaker.)
- Simpler: No need for an elaborate hierarchy of parameters that controls how regular one level of the partition is compared to the previous one.
Theorem (Gowers '97)

Tower-type bounds are unavoidable for graph regularity.

[Tao '06] predicted Ack\(_k\)-type bounds are unavoidable for \(k\)-graph regularity.

Theorem (Main result (informal), M.-Shapira '18+)

Ack\(_k\)-type bounds are unavoidable for \(k\)-graph regularity, for all \(k \geq 2\).

In fact, we prove this lower bound for a new notion of regularity which, compared to previous notions, is:

- Weaker. (In fact, strictly weaker.)
- Simpler: No need for an elaborate hierarchy of parameters that controls how regular one level of the partition is compared to the previous one. (In fact, it has almost nothing to do with hypergraphs!)
Szemerédi’s tower-type UB comes from constructing a regular partition in a sequence of steps, each increasing the partition size exponentially.
Szemerédi’s tower-type UB comes from constructing a regular partition in a sequence of steps, each increasing the partition size exponentially.

Gowers’ LB “reverse engineers” this UB, showing that constructing the partition using a sequence of exponential refinements is unavoidable.

More precisely, Gowers constructs a graph G, using a sequence of exponential refinements P_1, P_2, \ldots of $V(G)$, with the following property: If Z “approximately” refines P_i but not P_{i+1} then Z is not ϵ-regular.

Henceforth, we only consider 3-graph regularity.

The wowzer-type UB’s come from constructing a regular partition in a sequence of steps, each applying the graph regularity lemma and thus increasing the partition size by a tower-type function.

So the question is: Can we show that a sequence of applications of the graph regularity lemma is unavoidable?
Szemerédi’s tower-type UB comes from constructing a regular partition in a sequence of steps, each increasing the partition size exponentially.

Gowers’ LB “reverse engineers” this UB, showing that constructing the partition using a sequence of exponential refinements is unavoidable.

More precisely, Gowers constructs a graph G, using a sequence of exponential refinements $\mathcal{P}_1, \mathcal{P}_2, \ldots$ of $V(G)$, with the following property: If \mathcal{Z} “approximately” refines \mathcal{P}_i but not \mathcal{P}_{i+1} then \mathcal{Z} is not ϵ-regular.
Szemerédi’s tower-type UB comes from constructing a regular partition in a sequence of steps, each increasing the partition size exponentially.

Gowers’ LB “reverse engineers” this UB, showing that constructing the partition using a sequence of exponential refinements is unavoidable.

More precisely, Gowers constructs a graph G, using a sequence of exponential refinements $\mathcal{P}_1, \mathcal{P}_2, \ldots$ of $\mathcal{V}(G)$, with the following property: If \mathcal{Z} “approximately” refines \mathcal{P}_i but not \mathcal{P}_{i+1} then \mathcal{Z} is not ϵ-regular.

Henceforth, we only consider 3-graph regularity.
The Strategy of [Gowers '97]

- Szemerédi’s tower-type UB comes from constructing a regular partition in a sequence of steps, each increasing the partition size exponentially.
- Gowers’ LB “reverse engineers” this UB, showing that constructing the partition using a sequence of exponential refinements is unavoidable.
- More precisely, Gowers constructs a graph G, using a sequence of exponential refinements $\mathcal{P}_1, \mathcal{P}_2, \ldots$ of $V(G)$, with the following property: If \mathcal{Z} “approximately” refines \mathcal{P}_i but not \mathcal{P}_{i+1} then \mathcal{Z} is not ϵ-regular.

Henceforth, we only consider 3-graph regularity.

- The wowzer-type UB’s come from constructing a regular partition in a sequence of steps, each applying the graph regularity lemma and thus increasing the partition size by a tower-type function.
Szemerédi’s tower-type UB comes from constructing a regular partition in a sequence of steps, each increasing the partition size exponentially. Gowers’ LB “reverse engineers” this UB, showing that constructing the partition using a sequence of exponential refinements is unavoidable. More precisely, Gowers constructs a graph G, using a sequence of exponential refinements P_1, P_2, \ldots of $V(G)$, with the following property: If Z “approximately” refines P_i but not P_{i+1} then Z is not ϵ-regular.

Henceforth, we only consider 3-graph regularity.

The wowzer-type UB’s come from constructing a regular partition in a sequence of steps, each applying the graph regularity lemma and thus increasing the partition size by a tower-type function. So the question is: Can we show that a sequence of applications of the graph regularity lemma is unavoidable?
Lower Bounds for Hypergraph Regularity
Summary:
A Barrier to Proving Hypergraph Regularity Lower Bounds

Summary:

Goal

Prove a wowzer-type (i.e., A_3) lower bound.
Summary:

Goal

Prove a wowzer-type (i.e., A_3) lower bound.

- All known UB proofs iterate graph regularity (hence the wowzer bounds).
Summary:

Goal

Prove a wowzer-type (i.e., A_3) lower bound.

- All known UB proofs iterate graph regularity (hence the wowzer bounds).
- LB in particular must work vs. known UB proofs.
Summary:

Goal

Prove a wowzer-type (i.e., A_3) lower bound.

- All known UB proofs iterate graph regularity (hence the wowzer bounds).
- LB in particular must work vs. known UB proofs.

Observation

There is an alternative UB proof that iterates “relaxed” graph regularity.
Summary:

Goal

Prove a wowzer-type (i.e., A_3) lower bound.

- All known UB proofs iterate graph regularity (hence the wowzer bounds).
- LB in particular must work vs. known UB proofs.

Observation

There is an alternative UB proof that iterates “relaxed” graph regularity.

Barrier

Any wowzer-type LB must imply a tower-type LB for relaxed graph regularity.
Summary:

Goal
Prove a wowzer-type (i.e., A_3) lower bound.

- All known UB proofs iterate graph regularity (hence the wowzer bounds).
- LB in particular must work vs. known UB proofs.

Observation
There is an alternative UB proof that iterates “relaxed” graph regularity.

Barrier
Any wowzer-type LB must imply a tower-type LB for relaxed graph regularity.

All known graph LB proofs fail to work vs. relaxed graph regularity.
Sparse Regular Approximation Lemma (SRAL)

SRAL

Input: G with pn^2 edges.
Freedom: add/remove $1\% \cdot pn^2$ edges.
Goal: find a (small) p^{10}-regular partition.

Trivial upper bound: $T(1/p^{50})$.

Lower bound: ?

All previous constructions were not resilient to a constant fraction of edge modification.

Intuition
They were iterative, constructing the graph in “layers”. However, if one is allowed to modify 1% of the edges, one can essentially stop the construction at a stage where the graph still has a regular partition of constant order.
Sparse Regular Approximation Lemma (SRAL)

Input: G with pn^2 edges.
Freedom: add/remove $1\% \cdot pn^2$ edges.
Goal: find a (small) p^{10}-regular partition.

- Trivial upper bound: $T(1/p^{50})$.

All previous constructions were not resilient to a constant fraction of edge modification. Intuition: They were iterative, constructing the graph in “layers”. However, if one is allowed to modify 1% of the edges, one can essentially stop the construction at a stage where the graph still has a regular partition of constant order.
Sparse Regular Approximation Lemma (SRAL)

SRAL

Input: G with pn^2 edges.
Freedom: add/remove $1\% \cdot pn^2$ edges.
Goal: find a (small) p^{10}-regular partition.

- Trivial upper bound: $T(1/p^{50})$.
- Lower bound: ?
 All previous constructions were not resilient to a constant fraction of edge modification.
Sparse Regular Approximation Lemma (SRAL)

SRAL

Input: G with pn^2 edges.
Freedom: add/remove $1% \cdot pn^2$ edges.
Goal: find a (small) p^{10}-regular partition.

▶ Trivial upper bound: $T(1/p^{50})$.
▶ Lower bound: ?

 All previous constructions were not resilient to a constant fraction of edge modification.

Intuition

They were iterative, constructing the graph in “layers”. However, if one is allowed to modify 1% of the edges, one can essentially stop the construction at a stage where the graph still has a regular partition of constant order.
Theorem (LB for SRAL, M.-Shapira '17)

Lower bound: $T(\Omega(\log \frac{1}{p}))$.

Remark

The same paper also proves a matching upper bound for SRAL, and deduces Fox's celebrated $T(\mathcal{O}(\log \frac{1}{\epsilon}))$ bound [Ann. of Math. '11] for the graph removal lemma.
Bounds for SRAL

Theorem (LB for SRAL, M.-Shapira ’17)

Lower bound: $T(\Omega(\log \frac{1}{p}))$.

Remark

The same paper also proves a matching upper bound for SRAL, and deduces Fox’s celebrated $T(O(\log \frac{1}{\epsilon}))$ bound [Ann. of Math. ’11] for the graph removal lemma.
An Even Weaker Notion of Graph Regularity

It turns out SRAL lower bound is not weak enough.
It turns out SRAL lower bound is not weak enough. We define a notion which is at the “correct level of strength”:
An Even Weaker Notion of Graph Regularity

It turns out SRAL lower bound is not weak enough.
We define a notion which is at the “correct level of strength”:

Definition ((δ)-regularity for graphs)

- A bipartite graph on \((A, B)\) is \((\delta)\)-regular:
 \[\forall A' \subseteq A, B' \subseteq B, \text{ if } |A'| \geq \delta |A|, |B'| \geq \delta |B| \text{ then } d(A', B') \geq \frac{1}{2} d(A, B). \]
An Even Weaker Notion of Graph Regularity

It turns out SRAL lower bound is not weak enough. We define a notion which is at the “correct level of strength”:

Definition (\(\langle \delta \rangle\)-regularity for graphs)

- A bipartite graph on \((A, B)\) is \(\langle \delta \rangle\)-regular:
 \[\forall A' \subseteq A, B' \subseteq B, \text{ if } |A'| \geq \delta |A|, |B'| \geq \delta |B| \text{ then } d(A', B') \geq \frac{1}{2} d(A, B).\]

- \(\mathcal{P}\) is a \(\langle \delta \rangle\)-regular partition of \(G\):
 Can modify \(\leq \delta \cdot e(G)\) edges so \(\forall A \neq B \in \mathcal{P}, G'[A, B] \) is \(\langle \delta \rangle\)-regular.
An Even Weaker Notion of Graph Regularity

It turns out SRAL lower bound is not weak enough. We define a notion which is at the “correct level of strength”:

Definition (⟨δ⟩-regularity for graphs)

- A bipartite graph on \((A, B)\) is \(⟨δ⟩\)-regular:
 \[\forall A' \subseteq A, B' \subseteq B, \text{ if } |A'| \geq \delta |A|, |B'| \geq \delta |B| \text{ then } d(A', B') \geq \frac{1}{2} d(A, B).\]

- \(\mathcal{P}\) is a \(⟨δ⟩\)-regular partition of \(G\):
 Can modify \(\leq \delta \cdot e(G)\) edges so \(\forall A \neq B \in \mathcal{P}, G'[A, B]\) is \(⟨\delta⟩\)-regular.

Important difference from \(\epsilon\)-regularity: Can prove LB for \(⟨2^{-30})⟩\)-regularity.
Our Lower Bounds, Formally

Theorem (LB for graph $\langle \delta \rangle$-regularity, M.-Shapira ’18+)

$\forall p \in (0, 1) \ \exists \text{graph } G \text{ of density } p :$

every $\langle 2^{-30} \rangle$-regular partition of G is of order $\geq \Theta(\log \frac{1}{p})$.

Next goal

Lift LB for graph $\langle \delta \rangle$-regularity to a LB for 3-graph $\langle \delta \rangle$-regularity.

Theorem (Main result (for 3-graphs), M.-Shapira ’18+)

$\forall p \in (0, 1) \ \exists 3$-graph H of density $p :$

every $\langle 2^{-73} \rangle$-regular partition of H is of order $\geq \Theta(\log \frac{1}{p})$.
Our Lower Bounds, Formally

Theorem (LB for graph $\langle \delta \rangle$-regularity, M.-Shapira ’18+)

$\forall p \in (0, 1) \exists$ graph G of density p:

every $\langle 2^{-30} \rangle$-regular partition of G is of order $\geq T(\log \frac{1}{p})$.

Next goal

Lift LB for graph $\langle \delta \rangle$-regularity to a LB for 3-graph $\langle \delta \rangle$-regularity.
Our Lower Bounds, Formally

Theorem (LB for graph $\langle \delta \rangle$-regularity, M.-Shapira '18+)

\[\forall p \in (0, 1) \ \exists \text{graph } G \text{ of density } p : \forall \langle 2^{-30} \rangle \text{-regular partition of } G \text{ is of order } \geq T(\log \frac{1}{p}). \]

Next goal

Lift LB for graph $\langle \delta \rangle$-regularity to a LB for 3-graph $\langle \delta \rangle$-regularity.

Theorem (Main result (for 3-graphs), M.-Shapira '18+)

\[\forall p \in (0, 1) \ \exists \text{3-graph } H \text{ of density } p : \forall \langle 2^{-73} \rangle \text{-regular partition of } H \text{ is of order } \geq W(\log \frac{1}{p}). \]
The 3-graph regularity lemmas of Frankl-Rödl and of Gowers both have a wowzer-type lower bound.
The 3-graph regularity lemmas of Frankl-Rödl and of Gowers both have a wowzer-type lower bound.

In fact, even trivial versions of these notions are stronger than our notion.
Question

Is $\langle \delta \rangle$-regularity strong enough for counting small sub-hypergraphs?
Detour: How Strong is Our Lower Bound?

Question

Is $\langle \delta \rangle$-regularity strong enough for counting small sub-hypergraphs?

Answer

It is not even strong enough to count triangles in graphs!
Question

Is \(\langle \delta \rangle \)-regularity strong enough for counting small sub-hypergraphs?

Answer

It is not even strong enough to count triangles in graphs!

Lemma

There are arbitrary large tripartite graphs of density \(\approx \delta^5 \) whose every pair of classes span a \(\langle \delta \rangle \)-regular graph and yet are triangle free.
Reminder:

Definition ($\langle \delta \rangle$-regularity for graphs)

- A bipartite graph on (A, B) is $\langle \delta \rangle$-regular:
 \[
 \forall A' \subseteq A, B' \subseteq B, \text{ if } |A'| \geq \delta |A|, |B'| \geq \delta |B| \text{ then } d(A', B') \geq \frac{1}{2} d(A, B).
 \]
How Strong is our Lower Bound - cont.

Reminder:

Definition (\(\langle \delta \rangle\)-regularity for graphs)

- A bipartite graph on \((A, B)\) is \(\langle \delta \rangle\)-regular:
 \[
 \forall A' \subseteq A, B' \subseteq B, \text{ if } |A'| \geq \delta |A|, |B'| \geq \delta |B| \text{ then } d(A', B') \geq \frac{1}{2} d(A, B).
 \]

- \(\mathcal{P}\) is a \(\langle \delta \rangle\)-regular partition of \(G\):
 Can modify \(\leq \delta \cdot e(G)\) edges so \(\forall A \neq B \in \mathcal{P}, G'[A, B]\) is \(\langle \delta \rangle\)-regular.
Reminder:

Definition (⟨δ⟩-regularity for graphs)

- A bipartite graph on \((A, B)\) is \(⟨δ⟩\)-regular:
 \[\forall A', B' \subseteq B, \text{ if } |A'| \geq δ|A|, |B'| \geq δ|B| \text{ then } d(A', B') \geq \frac{1}{2} d(A, B). \]
- \(\mathcal{P}\) is a \(⟨δ⟩\)-regular partition of \(G\):
 Can modify \(\leq δ \cdot e(G)\) edges so \(\forall A \neq B \in \mathcal{P}, G'[A, B]\) is \(⟨δ⟩\)-regular.

Proof sketch.

- A random \(k \times k \times k\) tripartite graph of density \(p \approx δ^5\) with \(k \approx δ^{-7}\) is both \(⟨δ⟩\)-regular and has \(\approx δ^{-6}\) triangles (\(\ll pk^2\)).
How Strong is our Lower Bound - cont.

Reminder:

Definition (⟨δ⟩-regularity for graphs)

- A bipartite graph on \((A, B)\) is \(⟨δ⟩\)-regular:
 \[
 \forall A' \subseteq A, B' \subseteq B, \text{ if } |A'| \geq δ|A|, |B'| \geq δ|B| \text{ then } d(A', B') \geq \frac{1}{2} d(A, B).
 \]

- \(P\) is a \(⟨δ⟩\)-regular partition of \(G\):
 Can modify \(\leq δ \cdot e(G)\) edges so \(∀A \neq B \in P, G'[A, B]\) is \(⟨δ⟩\)-regular.

Proof sketch.

- A random \(k \times k \times k\) tripartite graph of density \(p \approx δ^5\) with \(k \approx δ^{-7}\) is both \(⟨δ⟩\)-regular and has \(\approx δ^{-6}\) triangles (\(\ll pk^2\)).

- Remove each triangle and take a blow-up; \(⟨δ⟩\)-regularity is preserved.
Main Result: Proof Sketch
Let $\mathcal{P}_1 \succ \cdots \succ \mathcal{P}_s$ be equipartitions with $|\mathcal{P}_{i+1}| = 2^c|\mathcal{P}_i|$.
Let $\mathcal{P}_1 \succ \cdots \succ \mathcal{P}_s$ be equipartitions with $|\mathcal{P}_{i+1}| = 2^c|\mathcal{P}_i|$.

Theorem (Gowers ’97)

\[\exists \text{ graph } G \text{ such that } \forall \epsilon \text{-regular partition } \mathcal{Z} \text{ of } G \text{ we have:} \]

\[\forall i : \mathcal{Z} \prec_x \mathcal{P}_i \Rightarrow \mathcal{Z} \prec_{4x} \mathcal{P}_{i+1} \text{ for } x \geq \sqrt{\epsilon}. \]

The implication was improved to give a simpler proof of the bound $T(1/\epsilon^c)$.

Guy Moshkovitz (Harvard University)
Tight Bounds for Regularity Lemmas
Let $\mathcal{P}_1 \succ \cdots \succ \mathcal{P}_s$ be equipartitions with $|\mathcal{P}_{i+1}| = 2^c|\mathcal{P}_i|$.

Theorem (Gowers ’97)

There exists a graph G such that for every ϵ-regular partition \mathcal{Z} of G we have:

\[
\forall i : \quad \mathcal{Z} \prec_x \mathcal{P}_i \Rightarrow \mathcal{Z} \prec_{4x} \mathcal{P}_{i+1} \quad \text{for } x \geq \sqrt{\epsilon}.
\]

The implication was improved to give a simpler proof of the bound $T(1/\epsilon^c)$.

Theorem (M.-Shapira ’16)

There exists a graph G such that for every ϵ-regular partition \mathcal{Z} of G we have:

\[
\forall i : \quad \mathcal{Z} \prec_x \mathcal{P}_i \Rightarrow \mathcal{Z} \prec_{x+8\epsilon} \mathcal{P}_{i+1}.
\]
Core Construction (special case)

Henceforth:

- \mathbf{L} and \mathbf{R} are vertex classes,
- $\mathcal{L}_1 \succ \cdots \succ \mathcal{L}_s$ and $\mathcal{R}_1 \succ \cdots \succ \mathcal{R}_s$ are s equipartitions of \mathbf{L} and \mathbf{R}, respectively, with $|\mathcal{L}_i| = 2^c|R_i|$.

Theorem (Core construction, special case)

\exists bipartite graph G on (\mathbf{L}, \mathbf{R}) with $d(G) = 2 - s$ such that \forall 2-regular partition $\langle \mathbf{L}, \mathbf{R} \rangle$ of G we have: $\forall i$: $\mathcal{R}_i \prec 2 - 9 \mathcal{R}_i \Rightarrow \mathcal{L}_i \prec 2 - 9 \mathcal{L}_i$.

Main differences compared to [Gowers '97]:

- The partitions' orders can grow arbitrarily fast
- ...and s can be arbitrarily large, with $d(G)$ decreasing with it.
- The graph's property is one sided.
Core Construction (special case)

Henceforth:

- \mathbf{L} and \mathbf{R} are vertex classes,
- $\mathbf{L}_1 \succ \cdots \succ \mathbf{L}_s$ and $\mathbf{R}_1 \succ \cdots \succ \mathbf{R}_s$ are s equipartitions of \mathbf{L} and \mathbf{R}, respectively, with $|\mathbf{L}_i| = 2^c|R_i|$.

Theorem (Core construction, special case)

\[\exists \text{ bipartite graph } G \text{ on } (\mathbf{L}, \mathbf{R}) \text{ with } d(G) = 2^{-s} \text{ such that } \]
\[\forall \langle 2^{-28} \rangle \text{-regular partition } (\mathbf{L}, \mathbf{R}) \text{ of } G \text{ we have: } \]
\[\forall i : \mathbf{R} \lesssim_{2^{-9}} \mathbf{R}_i \Rightarrow \mathbf{L} \lesssim_{2^{-9}} \mathbf{L}_i . \]
Core Construction (special case)

Henceforth:

- \(L \) and \(R \) are vertex classes,
- \(L_1 \succ \cdots \succ L_s \) and \(R_1 \succ \cdots \succ R_s \) are \(s \) equipartitions of \(L \) and \(R \), respectively, with \(|L_i| = 2^c|R_i| \).

Theorem (Core construction, special case)

\[
\exists \text{ bipartite graph } G \text{ on } (L, R) \text{ with } d(G) = 2^{-s} \text{ such that }
\forall \langle 2^{-28} \rangle\text{-regular partition } (L, R) \text{ of } G \text{ we have:}
\]

\[
\forall i : \quad R \prec_{2^{-g}} R_i \quad \Rightarrow \quad L \prec_{2^{-g}} L_i .
\]

Main differences compared to [Gowers '97]:

- The partitions' orders can grow arbitrarily fast
- \(s \) can be arbitrarily large, with \(d(G) \) decreasing with it.
- The graph's property is one sided.
Henceforth:

- \(L \) and \(R \) are vertex classes,
- \(L_1 \succ \cdots \succ L_s \) and \(R_1 \succ \cdots \succ R_s \) are \(s \) equipartitions of \(L \) and \(R \), respectively, with \(|L_i| = 2^{c|R_i|} \).

Theorem (Core construction, special case)

\[\exists \text{ bipartite graph } G \text{ on } (L, R) \text{ with } d(G) = 2^{-s} \text{ such that } \]
\[\forall (2^{-28})\text{-regular partition } (L, R) \text{ of } G \text{ we have: } \]
\[\forall i : \quad R \prec_{2^{-9}} R_i \quad \Rightarrow \quad L \prec_{2^{-9}} L_i. \]

Main differences compared to [Gowers '97]:

- The partitions' orders can grow arbitrarily fast
Core Construction (special case)

Henceforth:

- L and R are vertex classes,
- $L_1 \succ \cdots \succ L_s$ and $R_1 \succ \cdots \succ R_s$ are s equipartitions of L and R, respectively, with $|L_i| = 2^{c|R_i|}$.

Theorem (Core construction, special case)

\exists bipartite graph G on (L, R) with $d(G) = 2^{-s}$ such that

$\forall \langle 2^{-28} \rangle$-regular partition (L, R) of G we have:

$\forall i : \ R \prec_{2^{-9}} R_i \Rightarrow L \prec_{2^{-9}} L_i$.

Main differences compared to [Gowers ’97]:

- The partitions’ orders can grow arbitrarily fast
 - ...and s can be arbitrarily large, with $d(G)$ decreasing with it.
Core Construction (special case)

Henceforth:

- L and R are vertex classes,
- $L_1 \succ \cdots \succ L_s$ and $R_1 \succ \cdots \succ R_s$ are s equipartitions of L and R, respectively, with $|L_i| = 2^c|R_i|$.

Theorem (Core construction, special case)

\[\exists \text{ bipartite graph } G \text{ on } (L, R) \text{ with } d(G) = 2^{-s} \text{ such that} \]
\[\forall \langle 2^{-28} \rangle \text{-regular partition } (L, R) \text{ of } G \text{ we have:} \]
\[\forall i : \quad R \prec_{2^{-9}} R_i \quad \Rightarrow \quad L \prec_{2^{-9}} L_i . \]

Main differences compared to [Gowers '97]:

- The partitions' orders can grow arbitrarily fast
 - ...and s can be arbitrarily large, with $d(G)$ decreasing with it.
- The graph's property is one sided.
To prove our graph $\langle \delta \rangle$-regularity lower bound from Core Construction, put 4 copies along a 4-cycle.

\[T(1), T(2), \ldots, T(\log \frac{1}{p}) \]

\[T(1), T(2), \ldots, T(\log \frac{1}{p}) \]

\[d(G) = p \]
To prove our graph $\langle \delta \rangle$-regularity lower bound from Core Construction, put 4 copies along a 4-cycle.
To prove our graph $\langle \delta \rangle$-regularity lower bound from Core Construction, put 4 copies along a 4-cycle.
To prove our graph $\langle \delta \rangle$-regularity lower bound from Core Construction, put 4 copies along a 4-cycle.

\[|L_i| = |R_{i+1}| \]
Core Construction (general case)

Theorem (Core Construction)

\[\exists \text{ equipartitions } G_1 \succ \cdots \succ G_s \text{ of } L \times R \text{ with } |G_j| = 2^j \text{ such that } \forall G \in G_j \forall \langle 2^{-28} \rangle\text{-regular partition } (\mathcal{L}, \mathcal{R}) \text{ of } G \text{ we have:} \]

\[\forall i \leq j : \mathcal{R} \prec_{2^{-9}} \mathcal{R}_i \implies \mathcal{L} \prec_{2^{-9}} \mathcal{L}_i. \]
Why is Core Construction One-Sided?

- In order to prove a wowzer-type LB we will apply Core Construction with partitions whose orders grow as a wowzer-type function.
Why is Core Construction One-Sided?

- In order to prove a wowzer-type LB we will apply Core Construction with partitions whose orders grow as a wowzer-type function.
- Had Core Construction held without the one-sided assumption then one would have been able to prove wowzer-type LB for graph $\langle \delta \rangle$-regularity and thus also for Szemerédi’s regularity lemma.
Why is Core Construction One-Sided?

- In order to prove a wowzer-type LB we will apply Core Construction with partitions whose orders grow as a wowzer-type function.
- Had Core Construction held without the one-sided assumption then one would have been able to prove wowzer-type LB for graph $\langle \delta \rangle$-regularity and thus also for Szemerédi’s regularity lemma.
- In other words, if one wishes to have a construction that holds with arbitrarily fast growing orders, then one has to introduce one-sidedness.
The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a 3-graph we also use Core Construction in a somewhat unexpected way:

L will be a complete bipartite graph $V_1 \times V_2$ (and R will be V_3).

The L_i's will be partitions of $V_1 \times V_2$ themselves given by another application of Core Construction.

The second application of Core Construction will "multiply" L_i and R_i to give a 3-graph which is hard for $\langle \delta \rangle$-regularity.
The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a 3-graph we also use Core Construction in a somewhat unexpected way:

- \(L \) will be a complete bipartite graph \(V_1 \times V_2 \) (and \(R \) will be \(V_3 \))
The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a 3-graph we also use Core Construction in a somewhat unexpected way:

- \(L \) will be a complete bipartite graph \(\mathbf{V}_1 \times \mathbf{V}_2 \) (and \(R \) will be \(\mathbf{V}_3 \))
- The \(\mathcal{L}_i \)'s will be partitions of \(\mathbf{V}_1 \times \mathbf{V}_2 \) themselves given by another application of Core Construction
The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a 3-graph we also use Core Construction in a somewhat unexpected way:

- **L** will be a complete bipartite graph $V_1 \times V_2$ (and **R** will be V_3)
- The L_i’s will be partitions of $V_1 \times V_2$ themselves given by another application of Core Construction
- The partitions will be of wowzer-type growth.
The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a 3-graph we also use Core Construction in a somewhat unexpected way:

- \(L \) will be a complete bipartite graph \(V_1 \times V_2 \) (and \(R \) will be \(V_3 \))
- The \(L_i \)’s will be partitions of \(V_1 \times V_2 \) themselves given by another application of Core Construction
- The partitions will be of wowzer-type growth.

The second application of Core Construction will “multiply” \(L_i \) and \(R_i \) to give a 3-graph which is hard for \(\langle \delta \rangle \)-regularity.
The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a 3-graph we also use Core Construction in a somewhat unexpected way:

- \(L\) will be a complete bipartite graph \(V_1 \times V_2\) (and \(R\) will be \(V_3\))
- The \(L_i\)'s will be partitions of \(V_1 \times V_2\) themselves given by another application of Core Construction
- The partitions will be of wowzer-type growth.

The second application of Core Construction will “multiply” \(L_i\) and \(R_i\) to give a 3-graph which is hard for \(\langle \delta \rangle\)-regularity.

\[
\begin{align*}
H & \\
V_3 & d(H) = p \\
V_1 & \\
V_2 & \\
G_H & \\
V_3 & \\
V_1 \times V_2 &
\end{align*}
\]
The Definition of 3-Graph $\langle \delta \rangle$-Regularity

A 2-partition \mathcal{P} consists of a vertex equipartition V_1, \ldots, V_t, and an edge equipartition $K[V_i, V_j] = G_{1}^{i,j} \cup \cdots \cup G_{\ell}^{i,j} \ (\forall i \neq j)$.
The Definition of 3-Graph $\langle \delta \rangle$-Regularity

A 2-partition \mathcal{P} consists of a vertex equipartition V_1, \ldots, V_t, and an edge equipartition $K[V_i, V_j] = G_{i,j}^1 \cup \cdots \cup G_{i,j}^\ell \ (\forall i \neq j)$.

For 3-regularity, \mathcal{P} itself has to satisfy a condition.
The Definition of 3-Graph $\langle \delta \rangle$-Regularity

A 2-partition \mathcal{P} consists of a vertex equipartition V_1, \ldots, V_t, and an edge equipartition $K[V_i, V_j] = G_{i,j}^1 \cup \cdots \cup G_{i,j}^\ell$ ($\forall i \neq j$).

For 3-regularity, \mathcal{P} itself has to satisfy a condition.

Definition ($\langle \delta \rangle$-good partition)

A 2-partition is $\langle \delta \rangle$-good if every bipartite graph $G_{\ell}^{i,j}$ is $\langle \delta \rangle$-regular.
Definition (The auxiliary graph G_H)

Let H be a 3-partite 3-graph H on (V^1, V^2, V^3). Define a bipartite graph $G_H = G_H(V^1, V^2 \times V^3)$ on $(V^1, V^2 \times V^3)$ by

$$E(G_H) = \{ (v_1, (v_2, v_3)) \mid (v_1, v_2, v_3) \in E(H) \}.$$
3-graph $\langle \delta \rangle$-regularity

Definition ($\langle \delta \rangle$-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V^1, V^2, V^3), and let P be a $\langle \delta \rangle$-good 2-partition on $\{V^1, V^2, V^3\}$. P is a $\langle \delta \rangle$-regular partition of H if:

1. $P[V^1] \cup P[V^2 \times V^3]$ is a $\langle \delta \rangle$-regular partition of $G_H(V^1, V^2 \times V^3)$.

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas
3-graph $\langle \delta \rangle$-regularity

Definition ($\langle \delta \rangle$-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V^1, V^2, V^3), and let \mathcal{P} be a $\langle \delta \rangle$-good 2-partition on $\{V^1, V^2, V^3\}$. \mathcal{P} is a $\langle \delta \rangle$-regular partition of H if:

\mathcal{P} is a $\langle \delta \rangle$-regular partition of H if:

1. $\mathcal{P}[V^1] \cup \mathcal{P}[V^2 \times V^3]$ is a $\langle \delta \rangle$-regular partition of $G_H(V^1, V^2 \times V^3)$.

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas
Definition ($\langle \delta \rangle$-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V^1, V^2, V^3), and let \mathcal{P} be a $\langle \delta \rangle$-good 2-partition on $\{V^1, V^2, V^3\}$. \mathcal{P} is a $\langle \delta \rangle$-regular partition of H if:

1. $\mathcal{P}[V^1] \cup \mathcal{P}[V^2 \times V^3]$ is a $\langle \delta \rangle$-regular partition of $G_H(V^1, V^2 \times V^3)$.

3-graph $\langle \delta \rangle$-regularity
3-graph $\langle \delta \rangle$-regularity

Definition ($\langle \delta \rangle$-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V_1, V_2, V_3), and let \mathcal{P} be a $\langle \delta \rangle$-good 2-partition on $\{V_1, V_2, V_3\}$. \mathcal{P} is a $\langle \delta \rangle$-regular partition of H if:

1. $\mathcal{P}[V_1] \cup \mathcal{P}[V_2 \times V_3]$ is a $\langle \delta \rangle$-regular partition of $G_H(V_1, V_2 \times V_3)$.
3-graph $\langle \delta \rangle$-regularity

Definition ($\langle \delta \rangle$-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V^1, V^2, V^3), and let \mathcal{P} be a $\langle \delta \rangle$-good 2-partition on $\{V^1, V^2, V^3\}$. \mathcal{P} is a $\langle \delta \rangle$-regular partition of H if:

1. $\mathcal{P}[V^1] \cup \mathcal{P}[V^2 \times V^3]$ is a $\langle \delta \rangle$-regular partition of $G_H(V^1, V^2 \times V^3)$.
Definition (⟨δ⟩-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V^1, V^2, V^3), and let \mathcal{P} be a $⟨δ⟩$-good 2-partition on $\{V^1, V^2, V^3\}$.

\mathcal{P} is a $⟨δ⟩$-regular partition of H if:

1. $\mathcal{P}[V^1] \cup \mathcal{P}[V^2 \times V^3]$ is a $⟨δ⟩$-regular partition of $G_H(V^1, V^2 \times V^3)$.
Definition ($\langle \delta \rangle$-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V^1, V^2, V^3), and let \mathcal{P} be a $\langle \delta \rangle$-good 2-partition on $\{V^1, V^2, V^3\}$. \mathcal{P} is a $\langle \delta \rangle$-regular partition of H if:

1. $\mathcal{P}[V^1] \cup \mathcal{P}[V^2 \times V^3]$ is a $\langle \delta \rangle$-regular partition of $G_H(V^1, V^2 \times V^3)$.

G_H
Definition (\(\langle \delta \rangle\)-regularity for 3-graphs)

Let \(H\) be a 3-partite 3-graph on \((V^1, V^2, V^3)\), and let \(\mathcal{P}\) be a \(\langle \delta \rangle\)-good partition on \(\{V^1, V^2, V^3\}\). \(\mathcal{P}\) is a \(\langle \delta \rangle\)-regular partition of \(G\) if:

1. \(\mathcal{P}[V^1] \cup \mathcal{P}[V^2 \times V^3]\) is a \(\langle \delta \rangle\)-regular partition of \(G_H(V^1, V^2 \times V^3)\),
Definition (⟨δ⟩-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V^1, V^2, V^3), and let \mathcal{P} be a ⟨δ⟩-good partition on $\{V^1, V^2, V^3\}$. \mathcal{P} is a ⟨δ⟩-regular partition of G if:

1. $\mathcal{P}[V^1] \cup \mathcal{P}[V^2 \times V^3]$ is a ⟨δ⟩-regular partition of $G_H(V^1, V^2 \times V^3)$,
2. $\mathcal{P}[V^2] \cup \mathcal{P}[V^1 \times V^3]$ is a ⟨δ⟩-regular partition of $G_H(V^2, V^1 \times V^3)$,
3. $\mathcal{P}[V^3] \cup \mathcal{P}[V^1 \times V^2]$ is a ⟨δ⟩-regular partition of $G_H(V^3, V^1 \times V^2)$.
Our 3-graph Construction

\[
H
\]

\[
V_3^{T(1), T(2), \ldots, T(W(\log \frac{1}{p}))}
\]

\[
G_H
\]

\[
V_3
\]

\[
V_1 \times V_2
\]

Property:
\[
P[V_3] \prec 2^{-9} V_3 i \quad \text{and} \quad P[V_2] \prec 2^{-9} V_2 i \Rightarrow P[V_1] \prec 2^{-9} V_1 i + 1.
\]

Finally, take several copies of \(H\) along a (tight) 6-cycle.
1. Apply Core Construction with \((L, R) = (V^1, V^2)\).
Apply Core Construction with \((L, R) = (V^1, V^2)\).
Our 3-graph Construction

1 Apply Core Construction with \((L, R) = (V^1, V^2)\).
Our 3-graph Construction

1. Apply Core Construction with \((L, R) = (V^1, V^2)\).
2. Apply Core Construction with \((L, R) = (V^1 \times V^2, V^3)\).
Our 3-graph Construction

1. Apply Core Construction with \((L, R) = (V^1, V^2)\).
2. Apply Core Construction with \((L, R) = (V^1 \times V^2, V^3)\).
Our 3-graph Construction

1. Apply Core Construction with \((L, R) = (V_1, V_2)\).
2. Apply Core Construction with \((L, R) = (V_1 \times V_2, V_3)\).
Our 3-graph Construction

1. Apply Core Construction with \((L, R) = (V^1, V^2)\).
2. Apply Core Construction with \((L, R) = (V^1 \times V^2, V^3)\).

Property: \(P[V^3] \prec_{2-9} V^3_i\) and \(P[V^2] \prec_{2-9} V^2_i\) \(\Rightarrow\) \(P[V^1] \prec_{2-9} V^1_{i+1}\).
Our 3-graph Construction

1. Apply Core Construction with \((L, R) = (V^1, V^2)\).
2. Apply Core Construction with \((L, R) = (V^1 \times V^2, V^3)\).

Property: \(\mathcal{P}[V^3] \prec_{2-9} V^3_i\) and \(\mathcal{P}[V^2] \prec_{2-9} V^2_i \Rightarrow \mathcal{P}[V^1] \prec_{2-9} V^1_{i+1}\).

Finally, take several copies of \(H\) along a (tight) 6-cycle.
Open Question

We now know that “k-graph SRAL” has an $\text{Ack}_k(\Omega(\log \frac{1}{p}))$ lower bound.

▶ Prove a matching upper bound.
We now know that “k-graph SRAL” has an $\text{Ack}_k(\Omega(\log \frac{1}{p}))$ lower bound.

- Prove a matching upper bound.
- Deduce an $\text{Ack}_k(\Omega(\log \frac{1}{\epsilon}))$ bound for the k-graph removal lemma, thus improving the current bound $\text{Ack}_k(\Omega(\text{poly}(\frac{1}{\epsilon})))$.

Open Questions
Open Questions

Open Question

We now know that “k-graph SRAL” has an $\text{Ack}_k(\Omega(\log \frac{1}{p}))$ lower bound.

- Prove a matching upper bound.
- Deduce an $\text{Ack}_k(\Omega(\log \frac{1}{\epsilon}))$ bound for the k-graph removal lemma, thus improving the current bound $\text{Ack}_k(\Omega(\text{poly}(\frac{1}{\epsilon})))$.

Open Question

Come up with a weaker notion than hypergraph regularity that has primitive recursive bounds and yet is useful.
Thank you!
The construction of our 3-graph

For $1 \leq j \leq 3$ fix canonical partitions $\mathcal{V}_1^j \succ \mathcal{V}_2^j \succ \cdots$ with $|\mathcal{V}_i^j| \approx T(i)$.
The construction of our 3-graph

For $1 \leq j \leq 3$ fix canonical partitions $\mathcal{V}_1^j \succ \mathcal{V}_2^j \succ \cdots$ with $|\mathcal{V}_i^j| \approx T(i)$. Apply Key Lemma twice:

1. $(L, R) = (\mathcal{V}^1, \mathcal{V}^2)$, $(L_i, R_i) = (\mathcal{V}_{i+1}^1, \mathcal{V}_i^2)$ to get $G_1 \succ G_2 \succ \cdots$.

Finally, take several copies of H along a small design.
The construction of our 3-graph

For $1 \leq j \leq 3$ fix canonical partitions $\mathcal{V}_j^1 \succ \mathcal{V}_j^2 \succ \cdots$ with $|\mathcal{V}_j^i| \approx T(i)$. Apply Key Lemma twice:

1. $(L, R) = (\mathcal{V}^1, \mathcal{V}^2), (\mathcal{L}_i, \mathcal{R}_i) = (\mathcal{V}_{i+1}^1, \mathcal{V}_i^2)$ to get $G_1 \succ G_2 \succ \cdots$.

2. $(L, R) = (\mathcal{V}^1 \times \mathcal{V}^2, \mathcal{V}^3), (\mathcal{L}_i, \mathcal{R}_i) = (G_{W(i+1)}, \mathcal{V}_W(i)^3)$.
The construction of our 3-graph

For $1 \leq j \leq 3$ fix canonical partitions $\mathcal{V}_1^j \succ \mathcal{V}_2^j \succ \cdots$ with $|\mathcal{V}_i^j| \approx T(i)$. Apply Key Lemma twice:

1. $(L, R) = (V^1, V^2), (L_i, R_i) = (V_{i+1}^1, V_i^2)$ to get $G_1 \succ G_2 \succ \cdots$.

2. $(L, R) = (V^1 \times V^2, V^3), (L_i, R_i) = (G_{W(i+1)}, V_{W(i)}^3)$.

Take any graph in the last edge partition to get a 3-graph H.

Main claim

If H is $⟨\delta⟩$-regular relative to \mathcal{P} and

\[\mathcal{P}[V_3] \preceq 2^{-9} V_3 \]

and

\[\mathcal{P}[V_2] \preceq 2^{-9} V_2 \]

then

\[\mathcal{P}[V_1] \preceq 4\sqrt{\delta} V_{i+1}^1 \]
The construction of our 3-graph

For $1 \leq j \leq 3$ fix canonical partitions $\mathcal{V}_j^1 \succ \mathcal{V}_j^2 \succ \cdots$ with $|\mathcal{V}_j^i| \approx T(i)$. Apply Key Lemma twice:

1. $(L, R) = (V^1, V^2), (L_i, R_i) = (V_{i+1}^1, V_i^2)$ to get $G_1 \succ G_2 \succ \cdots$.
2. $(L, R) = (V^1 \times V^2, V^3), (L_i, R_i) = (G_{W(i+1)}, V_{W(i)}^3)$.

Take any graph in the last edge partition to get a 3-graph H. Finally, take several copies of H along a small design.
The construction of our 3-graph

For $1 \leq j \leq 3$ fix canonical partitions $\mathcal{V}_j^1 \succ \mathcal{V}_j^2 \succ \cdots$ with $|\mathcal{V}_j^i| \approx T(i)$. Apply Key Lemma twice:

1. $(L, R) = (V^1, V^2), (L_i, R_i) = (V^1_{i+1}, V^2_i)$ to get $G_1 \succ G_2 \succ \cdots$.

2. $(L, R) = (V^1 \times V^2, V^3), (L_i, R_i) = (G_{W(i+1)}, V^3_{W(i)})$.

Take any graph in the last edge partition to get a 3-graph H. Finally, take several copies of H along a small design.

Main claim

If H is $\langle \delta \rangle$-regular relative to \mathcal{P} and

if $\mathcal{P}[V^3] \prec_{2-9} V^3_i$ and $\mathcal{P}[V^2] \prec_{2-9} V^2_i$ then $\mathcal{P}[V^1] \prec \sqrt{\delta} V^1_{i+1}$.

Guy Moshkovitz (Harvard University)
Tight Bounds for Regularity Lemmas
Main claim

If H is $\langle \delta \rangle$-regular relative to P and

if $P[V^3] \ll_{2^{-9}} V_i^3$ and $P[V^2] \ll_{2^{-9}} V_i^2$ then $P[V^1] \ll \sqrt{4} \delta V_{i+1}^1$.

Suppose $W(j) \leq i < W(j+1)$:
Main claim

If \(H \) is \(\langle \delta \rangle \)-regular relative to \(\mathcal{P} \) and

\[
\text{if } \mathcal{P}[\mathbb{V}^3] \prec_{2-9} \mathbb{V}_i^3 \text{ and } \mathcal{P}[\mathbb{V}^2] \prec_{2-9} \mathbb{V}_i^2 \text{ then } \mathcal{P}[\mathbb{V}^1] \prec_{4/\delta} \mathbb{V}_{i+1}.
\]

Suppose \(W(j) \leq i < W(j + 1) \):

![Diagram with sets and relations]
The construction uses the following graph operation:

Modified blow-up of a bipartite graph G:

- replace each vertex x of G by a set of $2^{Ω(|V(G)|)}$ new vertices X
- replace each edge (u, v) with a bipartite graph on (U, V) as follows: letting $U' \subseteq U$ be a random half, replace (u, v) by $K(U', V)$.

Starting from $K_1, 1$, iteratively apply modified blow-ups $\log_2 p$ times. Each application increases the number of vertices exponentially and halves the density, so the resulting graph has density p and $T(Ω(\log_2 p))$ vertices.

Intuition: If G has a "unique" regular partition, then so does its modified blow-up.
The construction uses the following graph operation:

Modified blow-up of a bipartite graph G:
- replace each vertex x of G by a set of $2^{\Omega(|V(G)|)}$ new vertices X
- replace each edge (u, v) with a bipartite graph on (U, V) as follows: letting $U' \subseteq U$ be a random half, replace (u, v) by $K(U', V)$.

Construction
Starting from $K_{1,1}$, iteratively apply modified blow-ups $\log \frac{1}{p}$ times.
The construction uses the following graph operation:

Modified blow-up of a bipartite graph G:
- replace each vertex x of G by a set of $2^{\Omega(|V(G)|)}$ new vertices X
- replace each edge (u, v) with a bipartite graph on (U, V) as follows: letting $U' \subseteq U$ be a random half, replace (u, v) by $K(U', V)$.

Construction
Starting from $K_{1,1}$, iteratively apply modified blow-ups $\log \frac{1}{p}$ times. Each application increases the number of vertices exponentially and halves the density.
Lower Bounds Proof for Graph $\langle \delta \rangle$-Regularity

The construction uses the following graph operation:

Modified blow-up of a bipartite graph G:
- replace each vertex x of G by a set of $2^{\Omega(|V(G)|)}$ new vertices X
- replace each edge (u, v) with a bipartite graph on (U, V) as follows: letting $U' \subseteq U$ be a random half, replace (u, v) by $K(U', V)$.

Construction

Starting from $K_{1,1}$, iteratively apply modified blow-ups $\log \frac{1}{p}$ times. Each application increases the number of vertices exponentially and halves the density \Rightarrow the resulting graph has density p and $T(\Omega(\log \frac{1}{p}))$ vertices.
The construction uses the following graph operation:

Modified blow-up of a bipartite graph G:
- replace each vertex x of G by a set of $2^{\Omega(|V(G)|)}$ new vertices X
- replace each edge (u, v) with a bipartite graph on (U, V) as follows:
 letting $U' \subseteq U$ be a random half, replace (u, v) by $K(U', V)$.

Construction

Starting from $K_{1,1}$, iteratively apply modified blow-ups $\log \frac{1}{p}$ times.
Each application increases the number of vertices exponentially and halves the density
\Rightarrow the resulting graph has density p and $T(\Omega(\log \frac{1}{p}))$ vertices.

Intuition

If G has a “unique” regular partition then so does its modified blow-up.
Arguably most important application of the graph regularity lemma:
Arguably most important application of the graph regularity lemma:

Theorem (Triangle Removal Lemma, Ruzsa-Szemerédi ‘76)

For every n-vertex graph,

\[
\# \text{edge-disjoint triangles} \geq \epsilon n^2 \implies \# \text{triangles} \geq f(\epsilon)n^3.
\]
Arguably most important application of the graph regularity lemma:

Theorem (Triangle Removal Lemma, Ruzsa-Szemerédi ‘76)

For every n-vertex graph,

$$\#\text{edge-disjoint triangles} \geq \epsilon n^2 \implies \#\text{triangles} \geq f(\epsilon)n^3.$$

Application:

Theorem (Roth’s Theorem, ‘53)

For every subset $A \subseteq [n] = \{1, 2, \ldots, n\},$

$$|A| \geq \epsilon n \text{ and } n \geq n_0(\epsilon) \implies A \text{ contains a 3-AP.}$$
Theorem (Roth’s Theorem)

∀ A ⊆ [n]: |A| ≥ 0.01n ⇒ A contains a 3-AP.

Proof.

 Observation: a pair of (ordered) APs cannot agree on two elements.
Theorem (Roth’s Theorem)

∀A ⊆ [n]: |A| ≥ 0.01n ⇒ A contains a 3-AP.

Proof.

- Observation: a pair of (ordered) APs cannot agree on two elements.
- Consider all (ordered) 3-APs (x, x + a, x + 2a) with x ∈ [n], a ∈ A.
RL \Rightarrow \text{Roth’s Theorem}

Theorem (Roth’s Theorem)

\[\forall A \subseteq [n] : \quad |A| \geq 0.01n \Rightarrow A \text{ contains a 3-AP.} \]

Proof.

- Observation: a pair of (ordered) APs cannot agree on two elements.
- Consider all (ordered) 3-APs \((x, x + a, x + 2a)\) with \(x \in [n], a \in A\).
- Consider the corresponding tripartite graph (on \([n] \cup [2n] \cup [3n]\)).
Theorem (Roth’s Theorem)

∀A ⊆ [n]: |A| ≥ 0.01n ⇒ A contains a 3-AP.

Proof.

- Observation: a pair of (ordered) APs cannot agree on two elements.
- Consider all (ordered) 3-APs (x, x + a, x + 2a) with x ∈ [n], a ∈ A.
- Consider the corresponding tripartite graph (on [n] ∪ [2n] ∪ [3n]).
- #edge-disjoint-triangles is n|A| ≥ 0.01n². TRL ⇒ another triangle.
Theorem (Roth’s Theorem)

\[\forall A \subseteq [n]: \quad |A| \geq 0.01n \Rightarrow A \text{ contains a 3-AP.} \]

Proof.

- **Observation**: a pair of (ordered) APs cannot agree on two elements.
- Consider all (ordered) 3-APs \((x, x + a, x + 2a)\) with \(x \in [n], a \in A\).
- Consider the corresponding tripartite graph (on \([n] \cup [2n] \cup [3n]\)).
- \#edge-disjoint-triangles is \(n|A| \geq 0.01n^2\). TRL \(\Rightarrow\) another triangle.
- Its elements: \((y, y + \alpha, y + 2\alpha')\) with \(\alpha \neq \alpha' \in A\).
Theorem (Roth’s Theorem)

\[\forall A \subseteq [n]: \quad |A| \geq 0.01n \implies A \text{ contains a 3-AP.} \]

Proof.

- **Observation**: a pair of (ordered) APs cannot agree on two elements.
- Consider all (ordered) 3-APs \((x, x + a, x + 2a) \) with \(x \in [n], a \in A \).
- Consider the corresponding tripartite graph (on \([n] \cup [2n] \cup [3n]\)).
- #edge-disjoint-triangles is \(n|A| \geq 0.01n^2 \). TRL \(\implies \) another triangle.
- Its elements: \((y, y + \alpha, y + 2\alpha') \) with \(\alpha \neq \alpha' \in A \).
 - We have \((y + 2\alpha') - (y + \alpha) = 2\alpha' - \alpha \in A \).
Theorem (Roth’s Theorem)

\[\forall A \subseteq [n]: \quad |A| \geq 0.01n \quad \Rightarrow \quad A \text{ contains a 3-AP.} \]

Proof.

- **Observation:** a pair of (ordered) APs cannot agree on two elements.
- Consider all (ordered) 3-APs \((x, x + a, x + 2a)\) with \(x \in [n], a \in A\).
- Consider the corresponding tripartite graph (on \([n] \cup [2n] \cup [3n]\)).
- \#edge-disjoint-triangles is \(n|A| \geq 0.01n^2\). TRL \(\Rightarrow\) another triangle.
- Its elements: \((y, y + \alpha, y + 2\alpha')\) with \(\alpha \neq \alpha' \in A\).
 - We have \((y + 2\alpha') - (y + \alpha) = 2\alpha' - \alpha \in A\).
 - We found a (non-trivial) 3-AP in \(A\): \((\alpha, \alpha', 2\alpha' - \alpha)\).
Theorem (Roth’s Theorem)

∀A ⊆ [n]: |A| ≥ 0.01n ⇒ A contains a 3-AP.

Proof.

- **Observation**: a pair of (ordered) APs cannot agree on two elements.
- Consider all (ordered) 3-APs \((x, x + a, x + 2a)\) with \(x \in [n], a \in A\).
- Consider the corresponding tripartite graph (on \([n] \cup [2n] \cup [3n]\)).
- \#edge-disjoint-triangles is \(n|A| ≥ 0.01n^2\). TRL ⇒ another triangle.
- Its elements: \((y, y + α, y + 2α')\) with \(α ≠ α' \in A\).
 - We have \((y + 2α') - (y + α) = 2α' - α \in A\).
 - We found a (non-trivial) 3-AP in \(A\): \((α, α', 2α' - α)\).

Best known bounds:

\[
\varepsilon \ln(1/\varepsilon) ≤ \text{Rem}(\varepsilon) ≤ T(1/\varepsilon)
\]

\[
n^{-1/\sqrt{\log n}} ≤ r_3(n) ≤ \approx (\log n)^{-1}
\]