Do NP-Hard Problems Require Exponential Time?

Andrew Drucker

IAS

April 8, 2014
NP-completeness

- NP-completeness theory gives **great guidance** about which problems are efficiently solvable.
NP-completeness

- NP-completeness theory gives great guidance about which problems are efficiently solvable.

- 2-SAT, 2-Coloring, Euler Tour \in PTIME;

- 3-SAT, 3-Coloring, Hamilton Path \in NP-complete.
NP-completeness

- NP-completeness theory gives great guidance about which problems are efficiently solvable.

- 2-SAT, 2-Coloring, Euler Tour \(\in \) PTIME;

- 3-SAT, 3-Coloring, Hamilton Path
NP-completeness

- NP-completeness theory gives **great guidance** about which problems are efficiently solvable.

- 2-SAT, 2-Coloring, Euler Tour \in PTIME;

- 3-SAT, 3-Coloring, Hamilton Path NP-complete.
Want to solve NP-complete problems \(\implies \) must accept \textbf{compromise}!

Popular approach: find \textit{approximately-optimal} solutions.

(for optimization probs.)

Here too, NP-completeness theory (+ PCPs) often provides great guidance!

- \(0.5 \text{-approx } \text{Max-LIN} \left(\mathbb{F}_2 \right) \in \text{PTIME}; \)
- \((0.5 + \varepsilon) \text{-approx } \text{Max-LIN} \left(\mathbb{F}_2 \right): \text{NP-Complete}. \) [Håstad’97]
Want to solve NP-complete problems \(\implies \) must accept compromise!

Popular approach: find approximately-optimal solutions.
(for optimization probs.)

Here too, NP-completeness theory (+ PCPs) often provides great guidance!

- .5-approx Max-LIN \((\mathbb{F}_2)\) \(\in \) PTIME;
-
 \((.5 + \epsilon) \)-approx Max-LIN \((\mathbb{F}_2)\): NP-Complete. [Håstad’97]
NP-completeness

- Want to solve NP-complete problems \(\implies\) must accept **compromise**!

- Popular approach: find **approximately-optimal** solutions.
 (for optimization probs.)

- Here too, NP-completeness theory (+ PCPs) often provides great guidance!
 - \(0.5\)-approx Max-LIN \((\mathbb{F}_2)\) \(\in\) PTIME;
 - \((0.5 + \varepsilon)\)-approx Max-LIN \((\mathbb{F}_2)\): NP-Complete. [Håstad’97]
Sometimes we need an **exact** solution to an **NP-C** problem.

Then, compromise $$\implies$$ must accept an **inefficient** algorithm!
(at least, inefficient in the **worst case**—our focus)

Key question: Can we at least beat brute-force search??
NP-completeness

- Sometimes we need an **exact** solution to an **NP-C** problem.

- Then, **compromise** ⇒ must accept an **inefficient** algorithm!

 (at least, inefficient in the **worst case**—our focus)

- **Key question:** Can we at least beat brute-force search??
Sometimes we need an **exact** solution to an **NP-C** problem.

Then, **compromise** → must accept an **inefficient** algorithm!
(at least, inefficient in the **worst case**—our focus)

Key question: Can we at least beat brute-force search??
Time complexity

Known results for some popular **NP-C** problems:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Parameter</th>
<th>Trivial</th>
<th>Improved</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF-SAT</td>
<td>$n = #\text{vars}$</td>
<td>2^n</td>
<td>1.99^n</td>
<td>??</td>
</tr>
<tr>
<td>k-SAT</td>
<td></td>
<td></td>
<td>$2^{(1-1/k)n}$</td>
<td>[Paturi, Pudlák, Zane '97]</td>
</tr>
<tr>
<td>IND. SET</td>
<td>$n = #\text{vertices}$</td>
<td>2^n</td>
<td>1.23^n</td>
<td>[Tarjan, Trojanowski'77; more...]</td>
</tr>
<tr>
<td>PLANAR IND. SET</td>
<td></td>
<td></td>
<td>$2^{O(\sqrt{n})}$</td>
<td>[Ungar '51; Lipton, Tarjan '79]</td>
</tr>
<tr>
<td>HAM. PATH</td>
<td>$n!$</td>
<td>$2^n \ , \ 1.7^n$</td>
<td></td>
<td>[Held, Karp '62; Bjorklund '10]</td>
</tr>
</tbody>
</table>

(Strictly: $F(n)$'s above should be $O^*(F(n)) \triangleq F(n) \cdot |\text{instance}|^{O(1)}$.)
Example: Schöning’s alg.

- **Given:** a k-CNF $\mathcal{F} = C_1 \land C_2 \land \ldots \land C_m$.
 (each C_i an OR of $\leq k$ literals)

- **Goal:** find a satisfying solution to \mathcal{F} if one exists.

Algorithm $A(\mathcal{F})$:

1. Let $x \leftarrow$ (random assignment).
2. Choose any unsat. clause C_i; flip a rand. variable in C_i.
3. Repeat Step 2 for $3n$ steps.
Example: Schöning’s alg.

- **Given:** a k-CNF $\mathcal{F} = C_1 \land C_2 \land \ldots \land C_m$.

 (each C_i an OR of $\leq k$ literals)

- **Goal:** find a satisfying solution to \mathcal{F} if one exists.

Algorithm $A(\mathcal{F})$:

1. Let $x \leftarrow$ (random assignment).

2. Choose any unsat. clause C_i; flip a rand. variable in C_i.

3. Repeat Step 2 for $3n$ steps.
Example: Schöning’s alg.

Algorithm $A(\mathcal{F})$:

1. Let $x \leftarrow$ (random assignment).
2. Choose any unsat. clause C_i; flip a rand. variable in C_i.
3. Repeat Step 2 for $3n$ steps.

- Claim: if $\mathcal{F} \in \text{SAT}$, then
 $$\Pr[A(\mathcal{F})\text{finds a solution}] \geq 2^{-(1-c/k)n}.$$
 \[\implies \text{repeat for } 2^{(1-c/k)n} \text{ trials to find one w.h.p.} \]

- Analysis idea is very simple!
Example: Schöning’s alg.

Algorithm \(A(\mathcal{F}) \):

1. Let \(x \leftarrow (\text{random assignment}) \).
2. Choose any unsat. clause \(C_i \); flip a rand. variable in \(C_i \).
3. Repeat Step 2 for \(3n \) steps.

Claim: if \(\mathcal{F} \in \text{SAT} \), then

\[
\Pr[\text{A(\mathcal{F}) finds a solution}] \geq 2^{-(1-c/k)n}.
\]

\(\Rightarrow \) repeat for \(2^{(1-c/k)n} \) trials to find one w.h.p.!

Analysis idea is very simple!
Example: Schöning’s alg.

Algorithm $A(\mathcal{F})$:

1. Let $x \leftarrow \text{(random assignment)}$.
2. Choose any unsat. clause C_i; flip a rand. variable in C_i.
3. Repeat Step 2 for $3n$ steps.

- **Claim:** if $\mathcal{F} \in \text{SAT}$, then

$$\Pr[A(\mathcal{F})\text{finds a solution}] \geq 2^{-(1-c/k)n}.$$

\Longrightarrow repeat for $2^{(1-c/k)n}$ trials to find one w.h.p.!

- Analysis idea is very simple!
Example: Schöning’s alg.

Algorithm $A(\mathcal{F})$:

1. Let $x \leftarrow$ (random assignment).
2. Choose any unsat. clause C_i; flip a rand. variable in C_i.
3. Repeat Step 2 for $3n$ steps.

- **Claim**: if $\mathcal{F} \in \text{SAT}$, then

$$\Pr[A(\mathcal{F})\text{finds a solution}] \geq 2^{-(1-c/k)n}.$$

\[\implies \text{repeat for } 2^{(1-c/k)n} \text{ trials to find one w.h.p.}!\]

- **Analysis idea is very simple!**
Example: Schöning’s alg.

Algorithm $A(\mathcal{F})$:
1. Let $x \leftarrow \text{(random assignment)}$.
2. Choose any unsat. clause C_i; flip a rand. variable in C_i.
3. Repeat Step 2 for $3n$ steps.

Suppose $\mathcal{F}(x^*) = 1$. Let $x^t =$ state of x after t execs. of Step 2. Let

$$Y_t \triangleq ||x^t - x^*||_1 .$$

Key fact: if $Y_t > 0$, then

$$\Pr[Y_{t+1} = Y_t - 1] \geq 1/k .$$

Can lower-bound $\Pr[\min_t Y_t = 0]$ in terms of a biased random walk.

(biased against us, but not too badly!
Hope is that $Y_0 \ll n/2$.)
Example: Schöning’s alg.

Algorithm $A(\mathcal{F})$:

1. Let $x \leftarrow$ (random assignment).

2. Choose any unsat. clause C_i; flip a rand. variable in C_i.

3. Repeat Step 2 for $3n$ steps.

- Suppose $\mathcal{F}(x^*) = 1$. Let $x^t =$ state of x after t execs. of Step 2. Let

$$Y_t \triangleq ||x^t - x^*||_1.$$

- Key fact: if $Y_t > 0$, then

$$\Pr[Y_{t+1} = Y_t - 1] \geq 1/k.$$

- Can lower-bound $\Pr[\min_t Y_t = 0]$ in terms of a biased random walk.

(biased against us, but not too badly!
Hope is that $Y_0 \ll n/2$.)
Example: Schöning’s alg.

Algorithm $A(\mathcal{F})$:

1. Let $x \leftarrow$ (random assignment).
2. Choose any unsat. clause C_i; flip a rand. variable in C_i.
3. **Repeat** Step 2 for $3n$ steps.

Suppose $\mathcal{F}(x^*) = 1$. Let $x^t =$ state of x after t execs. of Step 2. Let

$$Y_t \triangleq ||x^t - x^*||_1 .$$

Key fact: if $Y_t > 0$, then

$$\Pr[Y_{t+1} = Y_t - 1] \geq 1/k .$$

Can lower-bound $\Pr[\min_t Y_t = 0]$ in terms of a biased random walk. (biased against us, but not too badly! Hope is that $Y_0 \ll n/2$.)
Example: Schöning’s alg.

Algorithm $A(\mathcal{F})$:

1. Let $x \leftarrow$ (random assignment).
2. Choose any unsat. clause C_i; flip a rand. variable in C_i.
3. Repeat Step 2 for $3n$ steps.

- Suppose $\mathcal{F}(x^*) = 1$. Let $x^t =$ state of x after t execs. of Step 2. Let
 \[
 Y_t \triangleq ||x^t - x^*||_1.
 \]

- **Key fact:** if $Y_t > 0$, then
 \[
 \Pr[Y_{t+1} = Y_t - 1] \geq 1/k.
 \]

- Can lower-bound $\Pr[\min_t Y_t = 0]$ in terms of a biased random walk.
 (biased against us, but not too badly! Hope is that $Y_0 \ll n/2$.)
Example: Schöning’s alg.

Algorithm \(A(\mathcal{F}) \):

1. Let \(x \leftarrow \) (random assignment).
2. Choose any unsat. clause \(C_i \); flip a rand. variable in \(C_i \).
3. **Repeat** Step 2 for \(3n \) steps.

- Suppose \(\mathcal{F}(x^*) = 1 \). Let \(x^t \) = state of \(x \) after \(t \) execs. of Step 2. Let
 \[
 Y_t \triangleq ||x^t - x^*||_1.
 \]
- **Key fact:** if \(Y_t > 0 \), then \(\Pr[Y_{t+1} = Y_t - 1] \geq 1/k \).
- Can lower-bound \(\Pr[\min_t Y_t = 0] \) in terms of a biased random walk.
 (biased **against** us, but not too badly!
 Hope is that \(Y_0 \ll n/2 \)).
Time complexity

Known results for some popular NP-C problems:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Parameter</th>
<th>Trivial</th>
<th>Improved</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF-SAT</td>
<td>$n = #\text{vars}$</td>
<td>2^n</td>
<td>1.99^n</td>
<td>??</td>
</tr>
<tr>
<td>k-SAT</td>
<td></td>
<td></td>
<td>$2^{(1-1/k)n}$</td>
<td>[Paturi, Pudlák, Zane '97]</td>
</tr>
<tr>
<td>IND. SET</td>
<td>$n = #\text{vertices}$</td>
<td>2^n</td>
<td>1.23^n</td>
<td>[Tarjan, Trojanowski’77; more...]</td>
</tr>
<tr>
<td>PLANAR IND. SET</td>
<td></td>
<td></td>
<td>$2^{O(\sqrt{n})}$</td>
<td>[Ungar '51; Lipton, Tarjan '79]</td>
</tr>
<tr>
<td>HAM. PATH</td>
<td>$n!$</td>
<td>2^n</td>
<td>1.7^n</td>
<td>[Held, Karp '62; Bjorklund '10]</td>
</tr>
</tbody>
</table>

NP-C theory: no prediction about relative difficulty, best runtimes for these probs!
Time complexity

Known results for some popular NP-C problems:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Parameter</th>
<th>Trivial</th>
<th>Improved</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF-SAT</td>
<td>$n = #\text{vars}$</td>
<td>2^n</td>
<td>1.99^n ??</td>
<td></td>
</tr>
<tr>
<td>k-SAT</td>
<td></td>
<td></td>
<td>$2^{(1-1/k)n}$</td>
<td>[Paturi, Pudlák, Zane ’97]</td>
</tr>
<tr>
<td>IND. SET</td>
<td>$n = #\text{vertices}$</td>
<td>2^n</td>
<td>1.23^n</td>
<td>[Tarjan, Trojanowski’77; more...]</td>
</tr>
<tr>
<td>PLANAR IND. SET</td>
<td></td>
<td></td>
<td>$2^{O(\sqrt{n})}$</td>
<td>[Ungar ’51; Lipton, Tarjan ’79]</td>
</tr>
<tr>
<td>HAM. PATH</td>
<td>$n!$</td>
<td>$2^n , 1.7^n$</td>
<td></td>
<td>[Held, Karp ’62; Bjorklund ’10]</td>
</tr>
</tbody>
</table>

NP-C theory: no prediction about relative difficulty, best runtimes for these probs!
Time complexity

Known results for some popular NP-C problems:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Parameter</th>
<th>Trivial</th>
<th>Improved</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF-SAT</td>
<td>(n = #\text{vars})</td>
<td>(2^n)</td>
<td>(1.99^n)</td>
<td>??</td>
</tr>
<tr>
<td>(k)-SAT</td>
<td></td>
<td></td>
<td>(2^{(1-1/k)n})</td>
<td>[Paturi, Pudlák, Zane '97]</td>
</tr>
<tr>
<td>IND. SET</td>
<td>(n = #\text{vertices})</td>
<td>(2^n)</td>
<td>(1.23^n)</td>
<td>[Tarjan, Trojanowski’77; more...]</td>
</tr>
<tr>
<td>PLANAR IND. SET</td>
<td></td>
<td></td>
<td>(2^{O(\sqrt{n})})</td>
<td>[Ungar '51; Lipton, Tarjan '79]</td>
</tr>
<tr>
<td>HAM. PATH</td>
<td>(n!)</td>
<td>(2^n)</td>
<td>(1.7^n)</td>
<td>[Held, Karp '62; Bjorklund '10]</td>
</tr>
</tbody>
</table>

Challenge for complexity theory: **explain** the seeming differences in difficulty!
Identify barriers to further progress!
Guide search for faster algorithms!

Andrew Drucker (IAS)
NP and the ETH
April 8, 2014
Time complexity

- Could $P \neq NP$ conjecture imply that NP-complete problems require exponential time?
- No idea. Seems hopeless!
- Influential approach: strengthen the conjecture!

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane '98)

No $2^{o(n)}$-time algorithm for n-variable 3-SAT.
Could $P \neq NP$ conjecture imply that NP-C probs require exponential time?

- No idea. Seems hopeless!

- Influential approach: strengthen the conjecture!

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No $2^{o(n)}$-time algorithm for n-variable 3-SAT.
The ETH

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No $2^{o(n)}$-time algorithm for n-variable 3-SAT.

- Formally: for $k \geq 3$, define $s_k \in [0, 1]$ by

 $$s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$$

 (allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

$$s_3 > 0.$$
The ETH

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No $2^{o(n)}$-time algorithm for n-variable 3-SAT.

Formally: for $k \geq 3$, define $s_k \in [0, 1]$ by

$$s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}.$$

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

$s_3 > 0$.

Andrew Drucker (IAS) NP and the ETH April 8, 2014
The ETH

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No $2^{o(n)}$-time algorithm for n-variable 3-SAT.

Formally: for $k \geq 3$, define $s_k \in [0, 1]$ by

$$s_k \triangleq \inf \{\varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n})\} .$$

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

$$s_3 > 0 .$$
The ETH

- Formally: for $k \geq 3$, define $s_k \in [0, 1]$ by

$$s_k \triangleq \inf \{\varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n})\}.$$

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

$$s_3 > 0.$$

- $s_3 \leq s_4 \leq s_5 \leq \ldots$

- Best known: $s_3 \leq 0.388$, $s_4 \leq 0.555$, $s_k \leq 1 - \Theta(1/k)$.

[Paturi, Pudlák, Saks, Zane '98; Hertli '11]
Formally: for \(k \geq 3 \), define \(s_k \in [0,1] \) by

\[
s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}.
\]

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

\[
s_3 > 0.
\]

\[
s_3 \leq s_4 \leq s_5 \leq \ldots
\]

Best known: \(s_3 \leq 0.388, \quad s_4 \leq 0.555, \quad s_k \leq 1 - \Theta(1/k). \)

[Paturi, Pudlák, Saks, Zane '98; Hertli '11]
The ETH

Formally: for \(k \geq 3 \), define \(s_k \in [0, 1] \) by

\[
s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}.
\]

(allowing randomized algos with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

\[
s_3 > 0.
\]

- \(s_3 \leq s_4 \leq s_5 \leq \ldots \)

- Best known: \(s_3 \leq 0.388, \) \(s_4 \leq 0.555, \) \(s_k \leq 1 - \Theta(1/k) \).

[Paturi, Pudlák, Saks, Zane '98; Hertli '11]
ETH

- Much stronger belief than $P \neq NP$.

- Payoff in explanatory power? YES!

But, story is more complex than NP-completeness.

Issue: ETH studies dependence on key param.

$$n = \# \text{vars}(\mathcal{F}) \ll |\mathcal{F}|.$$

Measures dimension of search space, not input size!

c.f. [Hunt, Stearns’90], “power index”
ETH

- Much stronger belief than \(P \neq NP \).
- Payoff in explanatory power?

YES! *But, story is more complex than NP-completeness.*

- Issue: ETH studies dependence on key param.
 \[n = \#\ vars(\mathcal{F}) \ll |\mathcal{F}|. \]

- Measures dimension of **search space**, not input size!
 c.f. [Hunt, Stearns’90], “power index”
ETH

- Much stronger belief than $P \neq NP$.

- Payoff in explanatory power?

YES!
But, story is more complex than NP-completeness.

- Issue: ETH studies dependence on key param.

\[n = \# \text{vars}(\mathcal{F}) \ll |\mathcal{F}|. \]

- Measures dimension of *search space*, not input size!

 c.f. [Hunt, Stearns’90], “power index”
ETH

- Much stronger belief than $P \neq NP$.

- Payoff in explanatory power?

YES! *But, story is more complex than NP-completeness.*

- Issue: ETH studies dependence on key param.

 $$n = \# \text{ vars}(\mathcal{F}) \ll |\mathcal{F}|.$$

- Measures dimension of *search space*, not input size!

 c.f. [Hunt, Stearns’90], “power index”
ETH

- Much stronger belief than $P \neq NP$.

- Payoff in explanatory power?

YES! *But, story is more complex than NP-completeness.*

- Issue: ETH studies dependence on key param.

\[n = \# \text{vars}(\mathcal{F}) \ll |\mathcal{F}|. \]

- Measures dimension of **search space**, not input size!

 c.f. [Hunt, Stearns’90], “power index”
Consequences of ETH

- Consider **IND. SET** problem. Solvable in $O^*(1.23^N)$ time on N-vertex graphs.

- Can we hope for $2^{o(N)}$? Or, would that violate ETH?

- Given: $2^{o(N)}$-time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F}.

 $n \triangleq \# \text{vars}, \ m \triangleq \# \text{clauses}$

- Usual NP-C reduction: $\mathcal{F} \rightarrow (G, k)$, where

 $|V(G)| = \Theta(n + m) = \Theta(m)$.

- We solve \mathcal{F} in time $2^{o(m)}$. **WEAK!**
Consequences of ETH

- Consider **IND. SET** problem. Solvable in $O^*(1.23^N)$ time on N-vertex graphs.

- Can we hope for $2^{o(N)}$? Or, would that violate ETH?

- Given: $2^{o(N)}$-time alg for **IND. SET**; try to solve 3-SAT instance F. ($n \triangleq \#\text{ vars}, \ m \triangleq \#\text{ clauses}$)

- Usual NP-C reduction: $F \rightarrow (G, k)$, where

 $$|V(G)| = \Theta(n + m) = \Theta(m).$$

- We solve F in time $2^{o(m)}$. **WEAK!**
Consequences of ETH

- Consider **IND. SET** problem. Solvable in $O^*(1.23^N)$ time on N-vertex graphs.

- Can we hope for $2^{o(N)}$? Or, would that violate ETH?

- Given: $2^{o(N)}$-time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F}. ($n \triangleq \# \text{ vars}, \ m \triangleq \# \text{ clauses}$)

- Usual NP-C reduction: $\mathcal{F} \rightarrow (G, k)$, where
 $$|V(G)| = \Theta(n + m) = \Theta(m).$$

- We solve \mathcal{F} in time $2^{o(m)}$. WEAK!
Consequences of ETH

- Consider **IND. SET** problem. Solvable in $O^*(1.23^N)$ time on N-vertex graphs.

- Can we hope for $2^{o(N)}$? Or, would that violate ETH?

- Given: $2^{o(N)}$-time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F}.

 \(n \triangleq \# \text{ vars}, \quad m \triangleq \# \text{ clauses} \)

- Usual NP-C reduction: $\mathcal{F} \rightarrow (G, k)$, where

 \[|V(G)| = \Theta(n + m) = \Theta(m) \, . \]

- We solve \mathcal{F} in time $2^{o(m)}$. **WEAK!**
Consequences of ETH

- Consider **IND. SET** problem. Solvable in $O^*(1.23^N)$ time on N-vertex graphs.

- Can we hope for $2^{o(N)}$? Or, would that violate ETH?

- Given: $2^{o(N)}$-time alg for **IND. SET**; try to solve 3-SAT instance \mathcal{F}. ($n \triangleq \# \text{ vars}, \quad m \triangleq \# \text{ clauses}$)

 Usual NP-C reduction: $\mathcal{F} \rightarrow (G, k)$, where

 $$|V(G)| = \Theta(n + m) = \Theta(m).$$

 We solve \mathcal{F} in time $2^{o(m)}$. **WEAK!**
Consequences of ETH

- Consider **IND. SET** problem. Solvable in $O^*(1.23^N)$ time on N-vertex graphs.

- Can we hope for $2^{o(N)}$? Or, would that violate ETH?

- Given: $2^{o(N)}$-time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F}. ($n \triangleq \# \text{vars}, m \triangleq \# \text{clauses}$)

- Usual NP-C reduction: $\mathcal{F} \rightarrow (G, k)$, where

 $$|V(G)| = \Theta(n + m) = \Theta(m).$$

 \implies We solve \mathcal{F} in time $2^{o(m)}$. **WEAK!**
Consequences of ETH

- Consider **IND. SET** problem. Solvable in $O^\ast(1.23^N)$ time on N-vertex graphs.

- Can we hope for $2^o(N)$? Or, would that violate ETH?

- Given: $2^o(N)$-time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F}.

 $(n \triangleq \# \text{ vars}, \quad m \triangleq \# \text{ clauses})$

- Usual NP-C reduction: $\mathcal{F} \rightarrow (G, k)$, where

 \[|V(G)| = \Theta(n + m) = \Theta(m). \]

- We solve \mathcal{F} in time $2^o(m)$. **WEAK!**
Consequences of ETH

- $2^{o(N)}$ time alg for **IND. SET** \implies Solve **3-SAT** in time $2^{o(m)}$.

Theorem (IPZ)

Solve **k-SAT** in time $2^{o(m)}$ \implies Solve **k-SAT** in time $2^{o(n)}$!!

- So, $2^{o(N)}$ time alg for **IND. SET** violates **ETH**.
Consequences of ETH

- $2^{o(N)}$ time alg for IND. SET \implies Solve 3-SAT in time $2^{o(m)}$.

Theorem (IPZ)

Solve k-SAT in time $2^{o(m)}$ \implies Solve k-SAT in time $2^{o(n)}$!!

- So, $2^{o(N)}$ time alg for IND. SET violates ETH.
Consequences of ETH

- $2^\omega(N)$ time alg for IND. SET \implies Solve 3-SAT in time $2^\omega(m)$.

Theorem (IPZ)

Solve k-SAT in time $2^\omega(m)$ \implies Solve k-SAT in time $2^\omega(n)$!!

- So, $2^\omega(N)$ time alg for IND. SET violates ETH.
Consequences of ETH

- $2^{o(N)}$ time alg for IND. SET \implies Solve 3-SAT in time $2^{o(m)}$.

Theorem (IPZ)

k-SAT in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies k$-SAT in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0$!!

- So, $2^{o(N)}$ time alg for IND. SET violates ETH.
Consequences of ETH

- $2^{o(N)}$ time alg for **IND. SET** \implies Solve **3-SAT** in time $2^{o(m)}$.

Theorem (IPZ)

k-**SAT** in time $O^*(2^{\varepsilon m}) \forall \varepsilon > 0 \implies k$-**SAT** in time $O^*(2^{\varepsilon n}) \forall \varepsilon > 0$!!

So, $2^{o(N)}$ time alg for **IND. SET** violates **ETH**.

Similar: **HAM PATH, DOMINATING SET, VERTEX COVER**.
Consequences of ETH

- **Planar IND. SET** problem: Solvable in $2^{O(\sqrt{N})}$ time on N-vertex planar graphs.

- Can we hope for $2^{o(\sqrt{N})}$?

- Usual NP-C reduction: 3-CNF $\mathcal{F} \rightarrow \text{(planar) } (G, k)$, where $|V(G)| = \Theta(m^2)$.

- Solve **Planar IND SET** in time $2^{o(\sqrt{N})} \implies$ solve **3-SAT** in time $2^{o(m)}$.

 Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.
Consequences of ETH

- **Planar IND. SET** problem: Solvable in $2^{O(\sqrt{N})}$ time on N-vertex planar graphs.

- Can we hope for $2^{o(\sqrt{N})}$?

- Usual NP-C reduction: 3-CNF $\mathcal{F} \rightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

- Solve **Planar IND SET** in time $2^{o(\sqrt{N})} \implies$ solve **3-SAT** in time $2^{o(m)}$.

Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.
Consequences of ETH

- **Planar IND. SET** problem: Solvable in $2^{O(\sqrt{N})}$ time on N-vertex planar graphs.

 - Can we hope for $2^{o(\sqrt{N})}$?

 - Usual NP-C reduction: 3-CNF $\mathcal{F} \rightarrow (\text{planar}) \ (G, k)$, where $|V(G)| = \Theta(m^2)$.

 - Solve **Planar IND SET** in time $2^{o(\sqrt{N})} \implies$ solve **3-SAT** in time $2^{o(m)}$.

 Again, violates ETH!

 - Similar: **(Planar) HAM PATH, DOM. SET, VERTEX COVER**.
Consequences of ETH

- **Planar IND. SET** problem: Solvable in $2^{O(\sqrt{N})}$ time on N-vertex planar graphs.

- Can we hope for $2^{o(\sqrt{N})}$?

 - Usual NP-C reduction: 3-CNF $\mathcal{F} \rightarrow (\text{planar}) \ (G, k)$, where $|V(G)| = \Theta(m^2)$.

 - Solve **Planar IND SET** in time $2^{o(\sqrt{N})} \implies$ solve **3-SAT** in time $2^{o(m)}$.

 Again, violates ETH!

- Similar: (Planar) **HAM PATH**, **DOM. SET**, **VERTEX COVER**.
Consequences of ETH

- **Planar IND. SET** problem: Solvable in $2^{O(\sqrt{N})}$ time on N-vertex planar graphs.

- Can we hope for $2^{o(\sqrt{N})}$?

- Usual NP-C reduction: 3-CNF $\mathcal{F} \rightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

- Solve **Planar IND SET** in time $2^{o(\sqrt{N})} \implies$ solve **3-SAT** in time $2^{o(m)}$.
 Again, violates ETH!

- Similar: (Planar) **HAM PATH, DOM. SET, VERTEX COVER.**
Consequences of ETH

- **Planar IND. SET** problem: Solvable in $2^{O(\sqrt{N})}$ time on N-vertex planar graphs.

- Can we hope for $2^{o(\sqrt{N})}$?

- Usual NP-C reduction: 3-CNF $\mathcal{F} \rightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

- Solve **Planar IND SET** in time $2^{o(\sqrt{N})} \implies$ solve **3-SAT** in time $2^{o(m)}$.

 Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.
Consequences of ETH

- **Planar IND. SET** problem: Solvable in $2^{O(\sqrt{N})}$ time on N-vertex planar graphs.

- Can we hope for $2^{o(\sqrt{N})}$?

- Usual NP-C reduction: 3-CNF $\mathcal{F} \rightarrow (\text{planar}) \ (G, k)$, where $|V(G)| = \Theta(m^2)$.

- Solve **Planar IND SET** in time $2^{o(\sqrt{N})} \implies$ solve **3-SAT** in time $2^{o(m)}$.

 Again, violates ETH!

- Similar: (Planar) **HAM PATH, DOM. SET, VERTEX COVER**.
Robustness of ETH

- Why focus on \textbf{3-SAT}? Is it WLOG?

 Could \textbf{3-SAT} be much easier than \textbf{4-SAT}??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \rightarrow \mathcal{G}^{(3)}$, where
 \[
 \# \text{ vars}(\mathcal{G}^{(3)}) = \Theta(\# \text{ clauses}(\mathcal{F}^{(3)})).
 \]

 \[2^{o(n)} \text{ time alg for 3-SAT} \implies \text{Solve 4-SAT in time } 2^{o(m)}.\]

 ([IPZ] result, again) \implies \text{Solve 4-SAT in time } 2^{o(n)}!

\textbf{Theorem (IPZ)}

\[
s_3 = 0 \iff s_k = 0 \forall k \geq 3.
\]
Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \rightarrow \mathcal{G}^{(3)}$, where

$$\# \text{ vars}(\mathcal{G}^{(3)}) = \Theta \left(\# \text{ clauses}(\mathcal{F}^{(3)}) \right).$$

- $2^{o(n)}$ time alg for 3-SAT \implies Solve 4-SAT in time $2^{o(m)}$.
 ([IPZ] result, again) \implies Solve 4-SAT in time $2^{o(n)!}$

Theorem (IPZ)

$s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3.$
Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps $\mathcal{F}^{(4)} \rightarrow \mathcal{G}^{(3)}$, where

$$
\# \text{ vars}(\mathcal{G}^{(3)}) = \Theta \left(\# \text{ clauses}(\mathcal{F}^{(3)}) \right).
$$

$2^{o(n)}$ time alg for 3-SAT \implies Solve 4-SAT in time $2^{o(m)}$.

([IPZ] result, again) \implies Solve 4-SAT in time $2^{o(n)}$!

Theorem (IPZ)

$$s_3 = 0 \iff s_k = 0 \ \forall k \geq 3.$$
Robustness of ETH

- Why focus on **3-SAT**? Is it WLOG?

Could **3-SAT** be much easier than **4-SAT**?

- Usual NP-C reduction maps \(F^{(4)} \rightarrow G^{(3)} \), where
 \[
 \# \text{ vars}(G^{(3)}) = \Theta \left(\# \text{ clauses}(F^{(3)}) \right).
 \]

- \(2^{o(n)} \) time alg for **3-SAT** \(\implies \) Solve **4-SAT** in time \(2^{o(m)} \).

([IPZ] result, again) \(\implies \) Solve **4-SAT** in time \(2^{o(n)} \)!

Theorem (IPZ)

\[
\forall k \geq 3, \quad s_3 = 0 \iff s_k = 0.
\]
Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

 Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \rightarrow \mathcal{G}^{(3)}$, where

 \[
 \# \text{ vars}(\mathcal{G}^{(3)}) = \Theta \left(\# \text{ clauses}(\mathcal{F}^{(3)}) \right).
 \]

- $2^{o(n)}$ time alg for 3-SAT \implies Solve 4-SAT in time $2^{o(m)}$.

 ([IPZ] result, again) \implies Solve 4-SAT in time $2^{o(n)}$!

Theorem (IPZ)

\[
 s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3.
\]
Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \rightarrow \mathcal{G}^{(3)}$, where

\[
\# \text{ vars}(\mathcal{G}^{(3)}) = \Theta\left(\# \text{ clauses}(\mathcal{F}^{(3)})\right).
\]

- $2^{o(n)}$ time alg for 3-SAT \implies Solve 4-SAT in time $2^{o(m)}$.

([IPZ] result, again) \implies Solve 4-SAT in time $2^{o(n)}$!

Theorem (IPZ)

\[
s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3.
\]
Robustness of ETH

- Why focus on \textbf{3-SAT}? \textbf{Is it WLOG?}

 Could \textbf{3-SAT} be much easier than \textbf{4-SAT}??

- Usual NP-C reduction maps $F^{(4)} \longrightarrow G^{(3)}$, where

 $\# \text{ vars}(G^{(3)}) = \Theta\left(\# \text{ clauses}(F^{(3)})\right)$.

- $2^{o(n)}$ time alg for \textbf{3-SAT} \implies Solve \textbf{4-SAT} in time $2^{o(m)}$.

 ([IPZ] result, again) \implies Solve \textbf{4-SAT} in time $2^{o(n)}$!

\textbf{Theorem (IPZ)}

\[s_3 = 0 \iff s_k = 0 \ \forall k \geq 3. \]
A stronger hypothesis

\[s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \} . \]

Exponential Time Hypothesis (ETH) (IPZ'97)

\[s_3 > 0 . \]

Best known: \(s_k \leq 1 - \Theta(1/k) \). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

\[\lim_{k} s_k = 1 . \]

- Note: SETH \(\Rightarrow \) ETH.
A stronger hypothesis

\[s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \} \]

Exponential Time Hypothesis (ETH) (IPZ'97)

\[s_3 > 0 \]

Best known: \(s_k \leq 1 - \Theta(1/k) \).

Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

\[\lim_{k} s_k = 1 \]

Note: SETH \(\Rightarrow \) ETH.
A stronger hypothesis

\[s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \} . \]

Exponential Time Hypothesis (ETH) (IPZ'97)

\[s_3 > 0 . \]

Best known: \(s_k \leq 1 - \Theta(1/k) \).

Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

\[\lim_{k} s_k = 1 . \]

Note: SETH ⇒ ETH.
A stronger hypothesis

\[s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \} . \]

Exponential Time Hypothesis (ETH) (IPZ'97)

\[s_3 > 0 . \]

Best known: \(s_k \leq 1 - \Theta(1/k) . \) Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

\[\lim_{k} s_k = 1 . \]

Note: SETH \(\Rightarrow \) ETH.
A stronger hypothesis

\[s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \} . \]

Exponential Time Hypothesis (ETH) (IPZ’97)

- \[s_3 > 0 . \]

Best known: \(s_k \leq 1 - \Theta(1/k) \). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

- \[\lim_{k} s_k = 1 . \]

- Note: SETH \(\Rightarrow \) ETH.
A stronger hypothesis

\[s_k \triangleq \inf \{ \varepsilon : k\text{-SAT decidable in time } O^*(2^{\varepsilon n}) \} . \]

Exponential Time Hypothesis (ETH) (IPZ'97)

\[s_3 > 0 . \]

Best known: \(s_k \leq 1 - \Theta(1/k) \). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

\[\lim_{k} s_k = 1 . \]

Note: SETH \(\Rightarrow \) ETH.
More consequences of ETH, SETH

- Many more runtime LBs shown under ETH, SETH.

- Strong power to explain dependence on natural input parameters.

- Major implications for parametrized complexity theory

 [Downey, Fellows]; [Lokshtanov, Marx, Saurabh survey]
Parametrized problems

Many problem instances have associated integer parameter — gives some indication of difficulty.

E.g., **VERTEX COVER**:

Given: \((G, k)\)

Decide: does \(G\) have a vertex cover of size \(k\)?

Goal of “parametrized algorithm” design: design algs that are “fast when \(k\) is small.”
Parametrized problems

- **VERTEX COVER:**

 Given: (G, k)

 Decide: does G have a vertex cover of size k?

- Known: VERTEX COVER solvable in time $2^k \cdot n^{O(1)}$ ($n = \#$ verts).

- ETH implies: Can’t solve in time $2^{o(k)} \cdot n^{O(1)}$.

Andrew Drucker (IAS)
NP and the ETH
April 8, 2014
Parametrized problems

- **VERTEX COVER:**

 Given: (G, k)

 Decide: does G have a vertex cover of size k?

- Known: VERTEX COVER solvable in time $2^k \cdot n^{O(1)}$ ($n = \# \text{ verts}$).

- ETH implies: Can’t solve in time $2^{o(k)} \cdot n^{O(1)}$.
Parametrized problems

- **VERTEX COVER:**
 - **Given:** \((G, k)\)
 - **Decide:** does \(G\) have a vertex cover of size \(k\)?

- **Known:** VERTEX COVER solvable in time \(2^k \cdot n^{O(1)}\) \((n = \#\) verts\).

- **ETH implies:** Can’t solve in time \(2^{o(k)} \cdot n^{O(1)}\).
Parametrized problems

- **CLIQUE:**

 Given: \((G, k)\)

 Decide: does \(G\) have a clique of size \(k\)?

- Known: CLIQUE solvable in time \(\approx n^k/k!\) \((n = \# \text{ verts})\).

- Standard assumption \((\text{FPT} \neq W[1])\) implies:

 can’t solve in \(F(k) \cdot n^{O(1)}\)...

- ETH implies: Can’t solve in time \(F(k) \cdot n^{o(k)}\).

 [Chen, Huang, Kanj, Xia’06]
Parametrized problems

- **CLIQUE:**

 Given: (G, k)
 Decide: does G have a clique of size k?

- Known: CLIQUE solvable in time $\approx \frac{n^k}{k!}$ ($n = \#$ verts).

- Standard assumption ($\text{FPT} \neq \text{W}[1]$) implies:
 can’t solve in $F(k) \cdot n^{O(1)}$...

- **ETH implies:** Can’t solve in time $F(k) \cdot n^{o(k)}$.
 [Chen, Huang, Kanj, Xia’06]
Parametrized problems

- **CLIQUE:**

 Given: \((G, k)\)

 Decide: does \(G\) have a clique of size \(k\)?

- Known: CLIQUE solvable in time \(\approx n^k / k!\) \((n = \#\) verts\).

- Standard assumption (\(FPT \neq W[1]\)) implies:

 can't solve in \(F(k) \cdot n^{o(1)}\)...

- **ETH implies:** Can't solve in time \(F(k) \cdot n^{o(k)}\).

 [Chen, Huang, Kanj, Xia’06]
Parametrized problems

- **k-DOMINATING SET:**

 Given: graph G.

 Decide: does G have a dom. set of size k?

- Known: solvable in time $n^{k+o(1)}$.

 [Eisenbrand, Grandoni’04; Pătraşcu, Williams’10]

- **Strong ETH implies:** Can’t solve in time $n^{k-\varepsilon}$.

 [Pătraşcu, Williams’10]

(Actually, a bit weaker hyp.)
Parametrized problems

- **k-DOMINATING SET:**

 Given: graph G.

 Decide: does G have a dom. set of size k?

- Known: solvable in time $n^{k+o(1)}$.

 [Eisenbrand, Grandoni'04; Pătraşcu, Williams'10]

- Strong ETH implies:* Can’t solve in time $n^{k-\varepsilon}$.

 [Pătraşcu, Williams'10]

*(Actually, a bit weaker hyp.)
Parametrized problems

- **k-DOMINATING SET:**

 Given: graph G.

 Decide: does G have a dom. set of size k?

- Known: solvable in time $n^{k + o(1)}$.

 [Eisenbrand, Grandoni’04; Pătrașcu, Williams’10]

- **Strong ETH implies:*** Can’t solve in time $n^{k - \varepsilon}$.

 [Pătrașcu, Williams’10]

(Actually, a bit weaker hyp.)
Parametrized problems

- **k-DOMINATING SET:**

 Given: graph G.

 Decide: does G have a dom. set of size k?

- Known: solvable in time $n^{k+o(1)}$.

 [Eisenbrand, Grandoni’04; Pătraşcu, Williams’10]

- **Strong ETH implies:*** Can’t solve in time $n^{k-\varepsilon}$.

 [Pătraşcu, Williams’10]

(Actually, a bit weaker hyp.)
Treewidth

- **Treewidth** of a graph G: $tw(G)$ = measure of “fatness” of G.

- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

 $$c^{tw(G)} \cdot n^{O(1)}$$

 for some c.

 (Given a tree decomposition.)

- [Lokshtanov, Marx, Saurabh ’11]: **Strong ETH** \implies some of these algorithms are **optimal**!

 (constant c can’t be improved!)

 E.g., IND SET, MAX-CUT: $c = 2$, DOM. SET: $c = 3$
Treewidth

- **Treewidth** of a graph G: $tw(G)$ is a measure of “fatness” of G.

- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time* $c^{tw(G)} \cdot n^{O(1)}$ for some c.

 (Given a tree decomposition.)

- [Lokshtanov, Marx, Saurabh ’11]: **Strong ETH** \implies some of these algorithms are **optimal!**

 (constant c can’t be improved!)

 E.g., IND SET, MAX-CUT: $c = 2$, DOM. SET: $c = 3$.
Treewidth

- **Treewidth** of a graph G: $tw(G)$ = measure of “fatness” of G.

- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*
 \[c^{tw(G)} \cdot n^{O(1)} \]
 for some c.

 (Given a tree decomposition.)

- [Lokshtanov, Marx, Saurabh ’11]: **Strong ETH** \implies some of these algorithms are **optimal!**

 (constant c can’t be improved!)

 E.g., IND SET, MAX-CUT: $c = 2$, DOM. SET: $c = 3$
Treewidth

- **Treewidth** of a graph G: $tw(G)$ = measure of “fatness” of G.

- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

 $$c^{tw(G)} \cdot n^{O(1)}$$

 for some c.

 (Given a tree decomposition.)

- [Lokshtanov, Marx, Saurabh ’11]: **Strong ETH** \implies some of these algorithms are **optimal**!

 (constant c can't be improved!)

 E.g., IND SET, MAX-CUT: $c = 2$, DOM. SET: $c = 3$
Hardness of subexponential-time approximation

How well can we approximate IND SET on \(n \)-vertex graphs in subexponential time?

Consider obtaining an \(r \)-approximation to max ind. set size, \(r = r(n) = \omega(1) \).

Theorem (Chitniz, Hajiaghayi, Kortsarz’13)

Can get \(r \)-approximation in time \(O^*(2^{n/r}) \).

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under ETH, no alg. for \(r(n) < n^{49} \) can have runtime \(O^*(2^{n^{0.99}/r^{1.01}}) \).
Hardness of subexponential-time approximation

How well can we approximate IND SET on \(n \)-vertex graphs in subexponential time?

Consider obtaining an \(r \)-approximation to max ind. set size, \(r = r(n) = \omega(1) \).

Theorem (Chitniz, Hajiaghayi, Kortsarz'13)

Can get \(r \)-approximation in time \(O^*(2^{n/r}) \).

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under \textbf{ETH}, no alg. for \(r(n) < n^{49} \) can have runtime \(O^*(2^{n^{99}/r^{1.01}}) \).
Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs in subexponential time?

Consider obtaining an r-approximation to max ind. set size, $r = r(n) = \omega(1)$.

Theorem (Chitniz, Hajiaghayi, Kortsarz’13)

Can get r-approximation in time $O^(2^{n/r})$.***

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under ETH, no alg. for $r(n) < n^{49}$ can have runtime $O^(2^{n^{99}/r^{1.01}})$.***
Hardness of subexponential-time approximation

How well can we approximate IND SET on \(n \)-vertex graphs in subexponential time?

Consider obtaining an \(r \)-approximation to max ind. set size, \(r = r(n) = \omega(1) \).

Theorem (Chitniz, Hajiaghayi, Kortsarz’13)

Can get \(r \)-approximation in time \(O^(2^{n/r}) \).*

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under ETH, no alg. for \(r(n) < n^{49} \) can have runtime \(O^(2^{n^{0.99}/r^{1.01}}) \).*
Graph diameter

\[
diameter(G) \equiv \max_{u,v} \text{dist}_G(u,v).
\]

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13)

For a simple graph \(G \) on \(n \) verts, \(m \) edges, can compute a \(3/2 \)-approximation to \(\text{diameter}(G) \) in (expected) time \(\tilde{O}(m \sqrt{n}) \).

Theorem (Roddity, Vassilevska Williams’13)

If we can estimate \(\text{diameter}(G) \) to approx. factor \((3/2 - \varepsilon) \) in time \(O(m^{2-\delta}) \), then SETH fails.

- **SETH** ➔ Detailed info about complexity of a poly-time computation!
Graph diameter

\[
\text{diameter}(G) \triangleq \max_{u,v} \text{dist}_G(u,v).
\]

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13)

*For a simple graph G on n verts, m edges, can compute $3/2$-approximation to diameter(G) in (expected) time $\tilde{O}(m\sqrt{n})$.***

Theorem (Roddity, Vassilevska Williams’13)

If we can estimate diameter(G) to approx. factor $(3/2 - \varepsilon)$ in time $O(m^{2-\delta})$, then SETH fails.

- **SETH** \iff Detailed info about complexity of a poly-time computation!
Graph diameter

\[\text{diameter}(G) \triangleq \max_{u,v} \text{dist}_G(u,v). \]

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13)

For a simple graph \(G \) on \(n \) verts, \(m \) edges, can compute 3/2-approximation to \(\text{diameter}(G) \) in (expected) time \(\tilde{O}(m\sqrt{n}) \).

Theorem (Roddity, Vassilevska Williams’13)

If we can estimate \(\text{diameter}(G) \) to approx. factor \((3/2 - \epsilon) \) in time \(O(m^{2-\delta}) \), then SETH fails.

- SETH → Detailed info about complexity of a poly-time computation!
Graph diameter

\[\text{diameter}(G) \triangleq \max_{u,v} \text{dist}_G(u, v). \]

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13)

For a simple graph \(G \) on \(n \) verts, \(m \) edges, can compute a 3/2-approximation to \(\text{diameter}(G) \) in (expected) time \(\widetilde{O}(m\sqrt{n}) \).

Theorem (Roddity, Vassilevska Williams’13)

If we can estimate \(\text{diameter}(G) \) to approx. factor \((3/2 - \varepsilon) \) in time \(O(m^{2-\delta}) \), then SETH fails.

- **SETH** → Detailed info about complexity of a poly-time computation!
Graph diameter

\[\text{diameter}(G) \triangleq \max_{u,v} \text{dist}_G(u, v). \]

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13)

For a simple graph \(G \) on \(n \) verts, \(m \) edges, can compute 3/2-approximation to \(\text{diameter}(G) \) in (expected) time \(\tilde{O}(m\sqrt{n}) \).

Theorem (Roddity, Vassilevska Williams’13)

If we can estimate \(\text{diameter}(G) \) to approx. factor \((3/2 - \varepsilon) \) in time \(O(m^{2-\delta}) \), then SETH fails.

- **SETH** → Detailed info about complexity of a poly-time computation!
Further afield

- [Abboud, Vassilevska Williams’14]: Improvements in certain **dynamic algorithms** for graph problems $\Rightarrow \neg$SETH.

- [Bringmann, this morning]: Compute Fréchet distance in $n^{2-\varepsilon}$ time $\Rightarrow \neg$SETH.

- Seems likely to see more results of this kind...
The key theorem

Theorem (IPZ)

\[k\text{-SAT in time } O^*(2^{\varepsilon m}) \forall \varepsilon > 0 \implies k\text{-SAT in time } O^*(2^{\varepsilon n}) \forall \varepsilon > 0. \]

\[m = \# \text{ clauses}(\mathcal{F}), \quad n = \# \text{ variables}(\mathcal{F}). \]

- Let’s see the proof ideas.
 - Main challenge: for general “dense” \(\mathcal{F} \), may have \(m \gg n \).

- Ideal approach: give a “sparsification” reduction:
 \[
 \mathcal{F} \longrightarrow^{\text{ptime}} \mathcal{F}' \quad \text{SAT}(\mathcal{F}) = \text{SAT}(\mathcal{F}')
 \]
 \[
 m', n' \leq O(n).
 \]

- Solve \(\mathcal{F}' \) in time \(2^{o(m')} = 2^{o(n)} \implies \text{solve } \mathcal{F}. \]
The key theorem

Theorem (IPZ)

\[\text{k-SAT in time } O^*(2^{\varepsilon m}) \quad \forall \varepsilon > 0 \quad \implies \quad \text{k-SAT in time } O^*(2^{\varepsilon n}) \quad \forall \varepsilon > 0. \]

\[m = \# \text{ clauses}(\mathcal{F}), \quad n = \# \text{ variables}(\mathcal{F}). \]

- Let’s see the proof ideas.
 - Main challenge: for general “dense” \(\mathcal{F} \), may have \(m \gg n \).
- Ideal approach: give a “sparsification” reduction:
 \[\mathcal{F} \longrightarrow^{\text{ptime}} \mathcal{F}' \quad \text{SAT}(\mathcal{F}) = \text{SAT}(\mathcal{F}') \]
 \[m', n' \leq O(n). \]
- Solve \(\mathcal{F}' \) in time \(2^{o(m')} = 2^{o(n)} \quad \implies \quad \text{solve } \mathcal{F}. \]

Andrew Drucker (IAS)
NP and the ETH
April 8, 2014
The key theorem

Theorem (IPZ)

\[\text{\textbf{k-SAT} in time } O^*(2^{\varepsilon m}) \quad \forall \varepsilon > 0 \quad \implies \quad \text{\textbf{k-SAT} in time } O^*(2^{\varepsilon n}) \quad \forall \varepsilon > 0. \]

\[m = \# \text{ clauses}(\mathcal{F}), \quad n = \# \text{ variables}(\mathcal{F}). \]

- Let’s see the proof ideas.
 - Main challenge: for general “dense” \(\mathcal{F} \), may have \(m \gg n \).
- Ideal approach: give a “sparsification” reduction:
 \[\mathcal{F} \longrightarrow^{\text{ptime}} \mathcal{F}' \quad \text{SAT}(\mathcal{F}) = \text{SAT}(\mathcal{F}') \]
 \[m', n' \leq O(n). \]

 - Solve \(\mathcal{F}' \) in time \(2^{o(m')} = 2^{o(n)} \implies \text{solve } \mathcal{F}. \]
The key theorem

Theorem (IPZ)

k-SAT in time $O^*(2^{\varepsilon m})$ \(\forall \varepsilon > 0\) \(\implies\) k-SAT in time $O^*(2^{\varepsilon n})$ \(\forall \varepsilon > 0\).

\[m = \# \text{ clauses}(\mathcal{F}), \quad n = \# \text{ variables}(\mathcal{F}). \]

- Let’s see the proof ideas.
 - Main challenge: for general “dense” \(\mathcal{F}\), may have \(m \gg n\).
 - Ideal approach: give a “sparsification” reduction:
 \[
 \mathcal{F} \rightarrow_{\text{ptime}} \mathcal{F}' \quad SAT(\mathcal{F}) = SAT(\mathcal{F}')
 \]
 \[
 m', n' \leq O(n).
 \]

- Solve \(\mathcal{F}'\) in time \(2^{o(m')} = 2^{o(n)} \implies\) solve \(\mathcal{F}\).

Andrew Drucker (IAS)
NP and the ETH
April 8, 2014
The key theorem

Theorem (IPZ)

k-SAT in time $O^*(2^{\varepsilon m}) \forall \varepsilon > 0 \implies k$-SAT in time $O^*(2^{\varepsilon n}) \forall \varepsilon > 0$.

$m = \# \text{ clauses}(\mathcal{F}), \quad n = \# \text{ variables}(\mathcal{F}).$

- Let’s see the proof ideas.

 Main challenge: for general “dense” \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a “sparsification” reduction:

 $\mathcal{F} \longrightarrow^{\text{ptime}} \mathcal{F}' \quad SAT(\mathcal{F}) = SAT(\mathcal{F}')$

 $m', n' \leq O(n)$.

- Solve \mathcal{F}' in time $2^{o(m')} = 2^{o(n)} \implies$ solve \mathcal{F}. ???

Andrew Drucker (IAS)
NP and the ETH
April 8, 2014
The key theorem

Theorem (IPZ)

k-SAT in time $O^*(2^{\varepsilon m})$ $\forall \varepsilon > 0$ \implies k-SAT in time $O^*(2^{\varepsilon n})$ $\forall \varepsilon > 0$.

$m = \# \text{ clauses}(\mathcal{F}),$ $n = \# \text{ variables}(\mathcal{F}).$

- Let's see the proof ideas.
 Main challenge: for general “dense” \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a “sparsification” reduction:

 $\mathcal{F} \xrightarrow{2^{o(n)} \text{ time}} \mathcal{F}'$ $\quad SAT(\mathcal{F}) = SAT(\mathcal{F}')$

 $m', n' \leq O(n)$.

- Solve \mathcal{F}' in time $2^{o(m')}$ = $2^{o(n)}$ \implies solve \mathcal{F}.

Andrew Drucker (IAS)
NP and the ETH
April 8, 2014
The key theorem

Theorem (IPZ)

\[\text{k-SAT in time } O^*(2^{\varepsilon m}) \, \forall \varepsilon > 0 \implies \text{k-SAT in time } O^*(2^{\varepsilon n}) \, \forall \varepsilon > 0. \]

\[m = \# \text{ clauses}(\mathcal{F}), \quad n = \# \text{ variables}(\mathcal{F}). \]

- Let’s see the proof ideas.
 Main challenge: for general “dense” \(\mathcal{F} \), may have \(m \gg n \).

- Ideal approach: give a “sparsification” reduction:

\[\mathcal{F} \xrightarrow{2^{o(n)} \text{ time}} \mathcal{F}' \quad \text{SAT}(\mathcal{F}) = \text{SAT}(\mathcal{F}') \]

\[m', n' \leq O(n). \]

- Solve \(\mathcal{F}' \) in time \(2^{o(m')} = 2^{o(n)} \implies \text{solve } \mathcal{F}. \]
The key lemma

- Relax this idea further...

\[F \rightarrow 2^{o(n)} \text{ time} \quad G^1, G^2, \ldots, G^s \quad s = 2^{o(n)} \]

\[SAT(F) = \bigvee_i SAT(F^i) \]

Sparsification Lemma (IPZ'97)

Fix \(k \geq 3, \varepsilon > 0 \).

There exists a reduction \(F \rightarrow G^1, \ldots, G^s \), computable in time \(O^*(2^{\varepsilon n}) \), such that

1. \(F \in SAT \iff \exists i : G^i \in SAT \);
2. \(s \leq 2^{\varepsilon n} \);
3. \(\#\text{vars}(G^i) \leq n \);
4. \(\#\text{clauses}(G^i) \leq O_{k,\varepsilon}(n) \).
The key lemma

- Relax this idea further...

\[\mathcal{F} \rightarrow 2^{o(n)} \text{ time} \quad G^1, G^2, \ldots, G^s \quad s = 2^{o(n)} \]

\[SAT(\mathcal{F}) = \bigvee_{i} SAT(\mathcal{F}_i) \]

Sparsification Lemma (IPZ’97)

Fix \(k \geq 3, \varepsilon > 0 \).

There exists a reduction \(\mathcal{F} \rightarrow G^1, \ldots, G^s \), computable in time \(O^*(2^{\varepsilon n}) \), such that

1. \(\mathcal{F} \in SAT \) iff \(\exists i : G^i \in SAT \);
2. \(s \leq 2^{\varepsilon n} \);
3. \(\#\text{vars}(G^i) \leq n \);
4. \(\#\text{clauses}(G^i) \leq O_{k,\varepsilon}(n) \).
The key lemma

- Relax this idea further...

\[\mathcal{F} \rightarrow^{2^{o(n)}} \text{time} \mathcal{G}^1, \mathcal{G}^2, \ldots, \mathcal{G}^s \quad s = 2^{o(n)} \]

\[SAT(\mathcal{F}) = \bigvee_i SAT(\mathcal{F}^i) \]

Sparsification Lemma (IPZ’97)

Fix \(k \geq 3, \varepsilon > 0 \).

There exists a reduction \(\mathcal{F} \rightarrow \mathcal{G}^1, \ldots, \mathcal{G}^s \), computable in time \(O^*(2^{\varepsilon n}) \), such that

1. \(\mathcal{F} \in SAT \) iff \(\exists i : \mathcal{G}^i \in SAT \);
2. \(s \leq 2^{\varepsilon n} \);
3. \(\#\text{vars}(\mathcal{G}^i) \leq n \);
4. \(\#\text{clauses}(\mathcal{G}^i) \leq O_{k,\varepsilon}(n) \).
The key lemma

Sparsification Lemma (IPZ’97)

Fix $k \geq 3, \varepsilon > 0$.

There exists a reduction $\mathcal{F} \rightarrow G^1, \ldots, G^s$, computable in time $O^*(2^{\varepsilon n})$, such that

1. $\mathcal{F} \in \text{SAT}$ iff $\exists i : G^i \in \text{SAT}$;
2. $s \leq 2^{\varepsilon n}$;
3. $\#\text{vars}(G^i) \leq n$;
4. $\#\text{clauses}(G^i) \leq O_{k,\varepsilon}(n)$.

Now suppose we could solve k-SAT in time $2^{\delta m}$ for small $\delta > 0$.

Use Lemma to solve k-SAT in time $2^{\varepsilon n} \cdot 2^{\delta(C_{k,\varepsilon} n)}$. Take $\delta \ll C_{k,\varepsilon}^{-1} \varepsilon$.

Andrew Drucker (IAS)

NP and the ETH

April 8, 2014
The key lemma

Sparsification Lemma (IPZ’97)

Fix \(k \geq 3, \varepsilon > 0. \)

There exists a reduction \(\mathcal{F} \to \mathcal{G}^1, \ldots, \mathcal{G}^s, \) *computable in time* \(O^*(2^{\varepsilon n}) \), *such that*

1. \(\mathcal{F} \in \text{SAT} \iff \exists i : \mathcal{G}^i \in \text{SAT} \);
2. \(s \leq 2^{\varepsilon n} \);
3. \(\#\text{vars}(\mathcal{G}^i) \leq n \);
4. \(\#\text{clauses}(\mathcal{G}^i) \leq O_{k,\varepsilon}(n) \).

- Now suppose we could solve \(k\text{-SAT} \) in time \(2^{\delta m} \) for small \(\delta > 0 \).

- Use Lemma to solve \(k\text{-SAT} \) in time \(2^{\varepsilon n} \cdot 2^{\delta(C_{k,\varepsilon} n)} \). Take \(\delta \ll C_{k,\varepsilon}^{-1} \varepsilon \).
The key lemma

Sparsification Lemma (IPZ’97)

Fix $k \geq 3, \varepsilon > 0$.

There exists a reduction $\mathcal{F} \rightarrow \mathcal{G}^1, \ldots, \mathcal{G}^s$, computable in time $O^(2^{\varepsilon n})$, such that*

1. $\mathcal{F} \in \text{SAT}$ iff $\exists i : \mathcal{G}^i \in \text{SAT}$;
2. $s \leq 2^{\varepsilon n}$;
3. $\#\text{vars}(\mathcal{G}^i) \leq n$;
4. $\#\text{clauses}(\mathcal{G}^i) \leq O_{k,\varepsilon}(n)$.

Now suppose we could solve k-SAT in time $2^{\delta m}$ for small $\delta > 0$.

- Use Lemma to solve k-SAT in time $2^{\varepsilon n} \cdot 2^{\delta (C_k,\varepsilon n)}$. Take $\delta \ll C_k^{-1} \varepsilon$.

Andrew Drucker (IAS)
NP and the ETH
April 8, 2014
The key lemma

Sparsification Lemma (IPZ’97)

Fix $k \geq 3, \varepsilon > 0$.

There exists a reduction $F \rightarrow G^1, \ldots, G^s$, computable in time $O^*(2^{\varepsilon n})$, such that

1. $F \in \text{SAT}$ iff $\exists i : G^i \in \text{SAT}$;
2. $s \leq 2^{\varepsilon n}$;
3. $\#\text{vars}(G^i) \leq n$;
4. $\#\text{clauses}(G^i) \leq O_{k,\varepsilon}(n)$.

Now suppose we could solve k-SAT in time $2^{\delta m}$ for small $\delta > 0$.

Use Lemma to solve k-SAT in time $2^{\varepsilon n} \cdot 2^{\delta(C_k,\varepsilon n)}$. Take $\delta \ll C_k^{-1} \varepsilon$.

Andrew Drucker (IAS)
NP and the ETH
April 8, 2014
Proof of sparsification lemma

(debt to D. Scheder’s notes!)
Thanks!