Topological Filters
A Toolbox for Processing Dynamic Signals

Michael Robinson
Acknowledgements

• Collaborators:
 – Cliff Joslyn, Katy Nowak, Brenda Praggastis, Emilie Purvine (PNNL)
 – Chris Capraro, Grant Clarke, Janelle Henrich (SRC)
 – Jason Summers, Charlie Gaumond (ARiA)
 – J Smart, Dave Bridgeland (Georgetown)

• Students:
 – Eyerusalem Abebe
 – Olivia Chen
 – Philip Coyle
 – Brian DiZio
 – Jen Dumiak
 – Samara Fantie
 – Sean Fennell
 – Robby Green
 – Noah Kim
 – Fangfei Lan
 – Metin Toksoz-Exley
 – Jackson Williams
 – Greg Young

• Recent funding: DARPA, ONR, AFRL
Key points

- Systems can be encoded as sheaves.
- Datasets are assignments to a sheaf model of a system.
- *Consistency radius measures compatibility* between system and dataset.
 - *Global sections* have zero consistency radius.
 - *Data fusion minimizes* consistency radius.
- Filters transform global sections via pairs of sheaf morphisms.
What is a sheaf?

A sheaf of _____________ on a ________________
(data type) (topological space)
Overlap constructs topology

no 2-simplex: there is a gap in scene coverage

2-simplex: there are scene points in common
Changing overlaps changes the topology

Coarse topology

Subset relation

restriction map

Sensing domains

Sections

Finer topology
Sheaves are about consistency

Non-numeric data types of varying complexity can certainly be supported!
Finite topologies from partial orders

- **Partial orders** describe the relationships between observations in a system… order relations correspond to (differential) operators

- Every partial order has a natural topology, the *Alexandroff topology*
 - **Presheaves** and **sheaves** “are the same thing” in this topology, since the gluing axiom is satisfied trivially
 - Commutativity is the only actual constraint on a sheaf diagrams
Topologizing a partial order
Topologizing a partial order

Open sets are unions of *up-sets*
Topologizing a partial order

Open sets are unions of \textit{up-sets}
Topologizing a partial order

Closed sets are complements of open sets
Topologizing a partial order

Intersections of up-sets are also up-sets
Topologizing a partial order

Intersections of up-sets are also up-sets
A sheaf on a poset is...

A set assigned to each element, called a stalk, and …

(The stalk on an element in the poset is better thought of being associated to the up-set)

This is a sheaf of vector spaces on a partial order
A sheaf on a poset is...

... restriction functions between stalks, following the order relation...

(“Restriction” because it goes from bigger up-sets to smaller ones)

This is a sheaf of vector spaces on a partial order
A sheaf on a poset is...

… so that the diagram commutes!

\[
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
2 \\
3 \\
1
\end{pmatrix} \begin{pmatrix}
1 & -1
\end{pmatrix} =
\begin{pmatrix}
2 & -2 \\
3 & -3 \\
1 & -1
\end{pmatrix}
\]

This is a sheaf of vector spaces on a partial order.
An assignment is...

... the selection of a value from all stalks

The term *serration* is more common, but perhaps more opaque.
A global section is...

... an assignment that is consistent with the restrictions
Some assignments aren’t consistent

…but they might be partially consistent
Consistency radius is...

… the maximum (or some other norm) distance between the value in a stalk and the values propagated along the restrictions

\[
\begin{vmatrix}
2 \\
3 \\
1
\end{vmatrix}
\begin{vmatrix}
+1
\end{vmatrix}
\begin{vmatrix}
-2 \\
-3 \\
-1
\end{vmatrix}
= 2 \sqrt{14}
\]

\[
\begin{vmatrix}
1 -1
\end{vmatrix}
\begin{vmatrix}
2 \\
3
\end{vmatrix}
\begin{vmatrix}
1 -1
\end{vmatrix}
= 2
\]

\[
\begin{vmatrix}
0 1 1 \\
1 0 1 \\
1 0 1
\end{vmatrix}
\begin{vmatrix}
0 1 \\
1 0 \\
1 0
\end{vmatrix}
\begin{vmatrix}
-2 1
\end{vmatrix}
= \sqrt{2}
\]

\[
\begin{vmatrix}
0 1 1 \\
1 0 1 \\
1 0 1
\end{vmatrix}
\begin{vmatrix}
2 \\
3 \\
1
\end{vmatrix}
\begin{vmatrix}
3 \\
2 \\
1
\end{vmatrix}
\geq 2 \sqrt{14}
\]

Note: lots more restrictions to check!
The space of global sections

It’s a subset of the product of the stalks over the minimal elements

Global sections $\subseteq \mathbb{R}^2 \times \mathbb{R}^3 \subseteq \mathbb{R}^{17}$

Thm: (R.) Consistency radius sets a lower bound on the distance to the nearest global section

Data fusion selects the nearest global section
Separating sinusoids from noise

- Consider a signal formed from N sinusoids
 - Each sinusoid has a (real) frequency ω
 - Each sinusoid has a (complex) amplitude a

- **Task**: Recover these parameters from M samples

f is an arbitrary known function

Possibilities:
- Magnitude
- Phase
- Identity function
- Quantizer output
- Signal dispersion

\[
x_m = f \left(\sum_{k=1}^{N} a_k e^{i\omega_k t_m} + n_m \right)
\]

- Sinusoid amplitude
- Sample time
- Sinusoid frequency
- Gaussian noise
Separating sinusoids from noise

- Consider a signal formed from N sinusoids
 - Each sinusoid has a (real) frequency ω
 - Each sinusoid has a (complex) amplitude a
- Model the situation as a sheaf over a poset...

$$x_m = f \left(\sum_{k=1}^{N} a_k e^{i\omega_k t_m} + n_m \right)$$

Signal models become *restrictions*

Parameter spaces become *stalks*
Separating sinusoids from noise

• Consider a signal formed from N sinusoids
 – Each sinusoid has a (real) frequency ω
 – Each sinusoid has a (complex) amplitude a

• The samples become an assignment to part of the sheaf

$$x_m = f \left(\sum_{k=1}^{N} a_k e^{i\omega_k t_m} + n_m \right)$$

$$x_1 \in \mathbb{C} \quad x_2 \in \mathbb{C} \quad \ldots \quad x_M \in \mathbb{C} \quad \text{Observed}$$

$\mathbb{R}^N \times \mathbb{C}^N$
Separating sinusoids from noise

- Consider a signal formed from N sinusoids
 - Each sinusoid has a (real) frequency ω
 - Each sinusoid has a (complex) amplitude a

- Find the unknown parameters by minimizing consistency radius

$$
\min_{a_k, \omega_k, \text{for } k=1,\ldots,N} \sum_{m=1}^{M} \left| f \left(\sum_{k=1}^{N} a_k e^{i \omega_k t_m} \right) - x_m \right|^2
$$

\[x_1 \in \mathbb{C} \quad x_2 \in \mathbb{C} \quad \ldots \quad x_M \in \mathbb{C}\]

\[\omega_1, \ldots, \omega_N, a_1, \ldots, a_N \in \mathbb{R}^N \times \mathbb{C}^N\]

Observed

Inferred
Sheaves deliver excellent performance

8x improvement over state-of-the-art in heavy noise!

Sheaf result

Spectral Estimation Comparison
3 Tone Signal, 3 Receiver(s), Normal Additive Noise
More complex example: flight tracking

- RDF sensor 1
- Planned flight path
- ATC radar
- ATC maximum range
- RDF sensor 2
... turns into a search and rescue mission

Observations generated using realistic simulated data... (known crash location withheld for validation)
Sheaf model of the sensors

- We can form a partial order of the sensors and their overlaps

Virtual (inferred) sensors

Physical sensors

Reported data

Partial order
Sheaf model of the sensors

- We can form a partial order of the sensors and their overlaps

Sheaf model

Restrictions A, B, C, D compute bearings from lat/lon
Restriction E computes estimated crash location from last known position, velocity, time
Case 1: Known flight path

Raw data:
Consistency radius: 15.7 km
Crash site error: 16.1 km (using last known position only)

Post-fusion:
Crash site error: 2.0 km
Case 2: Minor RDF angle error

Raw data:
Consistency radius: 11.6 km
Crash site error: 17.3 km (using last known position only)

Post-fusion:
Crash site error: 8.4 km
Case 3: Major flight path error

Raw data:
Consistency radius: 152 km
Crash site error: 193 km (using last known position only)

Post-fusion:
Crash site error: 74.4 km

High consistency radius means data and model are in conflict...
Topological filters
Discrete-time LTI filters

- **Linear Translation-Invariant** filters are the workhorses of modern signal processing.
Discrete-time LTI filters

- *Linear Translation-Invariant* filters are the workhorses of modern signal processing.

![Diagram showing input and output signals in time domain](image-url)
Discrete-time LTI filters

- *Linear Translation-Invariant* filters are the workhorses of modern signal processing.
Filters as sheaf morphisms

- **Theorem**: Every discrete-time LTI filter can be encoded as a sequence of two sheaf morphisms

\[S_1 \xrightarrow{\text{projection}} S_2 \xrightarrow{\text{combination}} S_3 \]

Sheaf formalism

Input ——— Internal state ——— Output

Hardware

- Shift register
- Weighted sum
Proof sketch: Input sheaf

- Sections of this sheaf are timeseries, instead of continuous functions
Proof sketch: Input sheaf

- Sections of this sheaf are timeseries, instead of continuous functions
Proof sketch: Input sheaf

- Sections of this sheaf are timeseries, instead of continuous functions
Proof sketch: Output sheaf

- The output sheaf is the same

\[\cdots \rightarrow 0 \leftarrow \mathbb{R} \rightarrow 0 \leftarrow \mathbb{R} \rightarrow 0 \leftarrow \mathbb{R} \rightarrow 0 \leftarrow \mathbb{R} \rightarrow \cdots \]
Proof sketch: The internal state

- Contents of the shift register at each timestep
- \(N = 3 \) shown

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

Michael Robinson
Proof sketch: The internal state

- Loads a new value with each timestep
Proof sketch: The internal state

- Computes linear functional of the shift register at each timestep (for instance, compute the mean)

\[
\begin{array}{ccccccccc}
0 & \xrightarrow{R} & 0 & \xrightarrow{R} & 0 & \xrightarrow{R} & 0 & \xrightarrow{R} & 0 \\
\text{(0 0 1)} & \uparrow & \text{(0 0 1)} \\
R^2 & \xleftarrow{R} & R^3 & \xleftarrow{R} & R^2 & \xleftarrow{R} & R^3 & \xleftarrow{R} & R^2 \\
\text{(1/3 1/3 1/3)} & \downarrow & \text{(1/3 1/3 1/3)} \\
0 & \xleftarrow{R} & 0 & \xleftarrow{R} & 0 & \xleftarrow{R} & 0 & \xleftarrow{R} & 0 \\
\end{array}
\]
Proof sketch: Finishing both morphisms

- Put in a few zero maps!
A practical topological filter

The *QuasiPeriodic Low Pass Filter* (QPLPF)
Circumventing bandwidth limits

- Traditional: averaging in a connected window
 - Noise cancellation (Good)
 - Distortion to the signal (Bad)

- Knowledge of the phase space: can safely do more averaging across the entire signal
Stage 1: Topological estimation

Stage 2: Topological filtering

Quasiperiodic factorization

Quotient construction

Averaging filter

Input signal

Output signal

Average along rows

Neighbors

Time

Michael Robinson
How is this a topological filter?

Stage 1: Topological estimation
- Input signal
- Quasiperiodic Factorization
- Quotient construction
- Output signal
- Output base space is \(\mathbb{Z} \)

Stage 2: Topological filtering
- Internal state base space is learned from the data
How is this a topological filter?

Stage 1: Topological estimation
- Samples grouped according to learned topology
- Input timeseries
- Project

Stage 2: Topological filtering
- Averaging filter
- Output timeseries

Input signal
- Quasiperiodic Factorization
- Quotient construction
- Output signal
QPLPF results

Some low frequency distortion

Extremely stable output amplitude
Compare: standard adaptive filter

Signals at ports of variable-bandwidth LPF filter

Unstable amplitude
Filter performance comparison

- QPLPF combines good noise removal with signal envelope stability
Ocean radar image despeckling

After topological filtering:

- Speckle and contrast improved
High-pass filtering

Detecting missing and spurious data

joint work with Fernando Benadon and Andy McGraw
Context: Afro-Cuban drumming

- Five instrumentalists
- No musical score
- Varying degrees of structure

Onset list → Inter-Onset Intervals

photo credit: Andrew McGraw
Extracting musical structure

- The *clave* is highly regular... it provides the timing for the ensemble

![Sliding window array]

![PCA of sliding window of attacks for clave]
Extracting musical structure

- The *clave* is highly regular…
- QPLPF acts by tightening the note clusters

QPLPF+PCA

Sliding window array (ignore the nuisance rotation!)

Michael Robinson
Extracting musical structure

... so much that it can be transcribed easily

![Sliding window array](image1)

![Measure window array](image2)
Some instruments are less clear

- The *segundo* is pretty structured...

Outliers present

Note clusters from main theme
Some instruments are less clear

… but automated transcription is frustrated by *ghost notes*. (There’s considerable musical nuance)

“Extra” notes

“Missing” notes

NB: These might be “extra” or “missing” on purpose!
Deghosting process

- Use QPLPF as a baseline, look at the difference!
- This is the QuasiPeriodic High Pass Filter

IOI timeseries

Form measure window array ➔ QPLPF ➔ Difference ➔ Peak detect ➔ Add/remove notes

Corrected IOI timeseries

QPHPF
Peak detection subtlety

- Two musically-separate halves of the piece.
- They need to be handled differently
Features now visible

First few measures are different, before stabilizing to regular pattern.

Distinct anomalous measures, possibly to resynch with other drummers, or maybe just weaker ghosts...

Segundo follows an 11-note pattern.
The future

• Computational sheaf theory
 – Small examples can be put together *ad hoc*
 – Larger ones require a software library
• **PySheaf**: a software library for sheaves
 – https://github.com/kb1dds/pysheaf
 – Includes several examples you can play with!
• Connections to statistical models need to be explored
• Extensive testing on various datasets and scenarios
For more information

Michael Robinson
michaelr@american.edu
Preprints available from my website:
http://www.drmichaelrobinson.net/