Cylindrical contact homology in dimension 3 via intersection theory and more

Jo Nelson

the IAS and Columbia University

Short Talks, October 1, 2014
What is a contact manifold?

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...
What is a contact manifold?

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...
What is a contact manifold?

A **contact structure** ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever
What is a contact manifold?

A contact structure ξ on \mathbb{M}^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(\mathbb{M}^{2n-1})$ is a contact structure whenever

$$\alpha \wedge (d\alpha)^{n-1}$$

is a volume form

\iff

Jo Nelson

Cylindrical contact homology in dimension 3
What is a contact manifold?

A **contact structure** ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever:

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form
- $d\alpha|_\xi$ is nondegenerate
What is a contact manifold?

A **contact structure** ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form

\iff

- $d\alpha|_\xi$ is nondegenerate

Jo Nelson

Cylindrical contact homology in dimension 3
A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a contact structure whenever

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form

\iff

- $d\alpha|_\xi$ is nondegenerate

Here: $\alpha = dz - ydx$
Choose a contact form α.

Definition

The Reeb vector field R_α is uniquely determined by

- $\alpha(R_\alpha) = 1$,
- $d\alpha(R_\alpha, \cdot) = 0$.

Reeb orbits are Hopf fibers of S^3.

Patrick Massot

http://www.nilesjohnson.net/hopf.html

Jo Nelson

Cylindrical contact homology in dimension 3
Reeb flow

Choose a contact form α.

Definition

The Reeb vector field R_α is uniquely determined by

- $\alpha(R_\alpha) = 1$,
- $d\alpha(R_\alpha, \cdot) = 0$.

Reeb orbits are Hopf fibers of S^3,

Patrick Massot

http://www.nilesjohnson.net/hopf.html

Jo Nelson

Cylindrical contact homology in dimension 3
Reeb flow

Choose a contact form α.

Definition

The Reeb vector field R_α is uniquely determined by

- $\alpha(R_\alpha) = 1$,
- $d\alpha(R_\alpha, \cdot) = 0$.

Reeb orbits are Hopf fibers of S^3, $\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv)$

Patrick Massot

http://www.nilesjohnson.net/hopf.html

Jo Nelson

Cylindrical contact homology in dimension 3
A dream for a chain complex

Assume: M closed and α nondegenerate
A dream for a chain complex

Assume: M closed and α nondegenerate

“Do” Morse theory on

$$A : C^\infty(S^1, M) \to \mathbb{R},$$

$$\gamma \mapsto \int_\gamma \alpha.$$
Assume: M closed and α nondegenerate

“Do” Morse theory on

$$\mathcal{A} : \mathcal{C}^\infty(S^1, M) \rightarrow \mathbb{R},$$

$$\gamma \mapsto \int_{\gamma} \alpha.$$

Proposition

$$\gamma \in \text{Crit}(\mathcal{A}) \iff \gamma \text{ is a closed Reeb orbit}.$$
A dream for a chain complex

Assume: M closed and α nondegenerate

“Do” Morse theory on

$$A : C^\infty(S^1, M) \to \mathbb{R}, \\ \gamma \mapsto \int_\gamma \alpha.$$

Proposition

$\gamma \in \text{Crit}(A) \iff \gamma$ is a closed Reeb orbit.

- Grading on orbits given by Conley-Zehnder index,
Assume: M closed and α nondegenerate

“Do” Morse theory on

$$A : C^\infty(S^1, M) \rightarrow \mathbb{R}, \\
\gamma \mapsto \int_{\gamma} \alpha.$$

Proposition

$$\gamma \in \text{Crit}(A) \iff \gamma \text{ is a closed Reeb orbit}.$$

- Grading on orbits given by Conley-Zehnder index,
A dream for a chain complex

Assume: M closed and α nondegenerate

“Do” Morse theory on A:

$$A : \quad C^\infty(S^1, M) \rightarrow \mathbb{R}, \quad \gamma \mapsto \int_\gamma \alpha.$$

Proposition

$$\gamma \in \text{Crit}(A) \iff \gamma \text{ is a closed Reeb orbit}.$$

- Grading on orbits given by Conley-Zehnder index,
- $C_*(\alpha) = \{\text{closed Reeb orbits}\} \setminus \{\text{bad Reeb orbits}\}$
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_\pm are Reeb orbits of periods T_\pm.

Hope this is independent of our choices.

Conjecture (Eliashberg-Givental-Hofer '00)
Assume a minimal amount of things. Then $(\mathcal{C}_\bullet(\alpha), \partial)$ forms a chain complex and $H(\mathcal{C}_\bullet(\alpha), \partial)$ is independent of α and \tilde{J}.
A dream...

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_\pm are Reeb orbits of periods T_\pm.

\[
\begin{aligned}
 u &:= (a, f) : (\mathbb{R} \times S^1, j) \rightarrow (\mathbb{R} \times M, \tilde{J}) \\
 \bar{\partial}_j \tilde{J} u &:= du + \tilde{J} \circ du \circ j \equiv 0
\end{aligned}
\]
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders \(u \in \mathcal{M}(\gamma_+; \gamma_-) \), where \(\gamma_\pm \) are Reeb orbits of periods \(T_\pm \).

\[
 u := (a, f) : (\mathbb{R} \times S^1, j) \rightarrow (\mathbb{R} \times M, \tilde{J}) \quad \lim_{s \rightarrow \pm \infty} a(s, t) = \pm \infty
\]

\[
 \tilde{\partial}_j, \tilde{J} u := du + \tilde{J} \circ du \circ j \equiv 0 \quad \lim_{s \rightarrow \pm \infty} f(s, t) = \gamma_\pm(T_\pm t)
\]

up to reparametrization.
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm}.

$$u := (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J})$$

$$\lim_{s \to \pm \infty} a(s, t) = \pm \infty$$

$$\lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t)$$

up to reparametrization.

$\partial : C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization.
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm}.

$$u := (a, f) : (\mathbb{R} \times S^1, j) \rightarrow (\mathbb{R} \times M, \tilde{J}) \quad \lim_{s \to \pm \infty} a(s, t) = \pm \infty$$

$$\bar{\partial}_j u := du + \tilde{J} \circ du \circ j \equiv 0 \quad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm} t)$$

up to reparametrization.

- $\partial : C_* \rightarrow C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders \(u \in \mathcal{M}(\gamma_+; \gamma_-) \), where \(\gamma_\pm \) are Reeb orbits of periods \(T_\pm \).

\[
u := (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \quad \lim_{s \to \pm \infty} a(s, t) = \pm \infty
\]

\[\bar{\partial} \jmath \circ \nu := du + \tilde{J} \circ du \circ j \equiv 0 \quad \lim_{s \to \pm \infty} f(s, t) = \gamma_\pm (T_\pm t)
\]
up to reparametrization.

- \(\partial : C_* \to C_{*-1} \) is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

Conjeorem (Eliashberg-Givental-Hofer '00)

Assume a minimal amount of things. Then \((C_ (\alpha), \partial))\) forms a chain complex and \(H(C_* (\alpha), \partial) \) is independent of \(\alpha \) and \(\tilde{J} \).*
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+; \gamma_-)$ more than a letter?
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+; \gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+; \gamma_-)$ can have **nonpositive** virtual dimension!?!
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+; \gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+; \gamma_-)$ can have nonpositive virtual dimension!?!?
- Compactness issues are severe
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+; \gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+; \gamma_-)$ can have **nonpositive** virtual dimension!?!?
- Compactness issues are severe

 Desired compactification
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+; \gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+; \gamma_-)$ can have **nonpositive** virtual dimension!?!?
- Compactness issues are severe

Desired compactification

Adding to 2 becomes hard
Hope: the big reveal

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
Automatic transversality results of Wendl, Hutchings, and Taubes in \textbf{dimension 3}.

Understand basic arithmetic and the Conley-Zehnder index.

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_α has only contractible orbits.

We say a contact form is dynamically separated whenever

(i) All closed simple contractible Reeb orbits γ satisfy $3 \leq \mu_{CZ}(\gamma) \leq 5$.

(ii) $\mu_{CZ}(\gamma_k) = \mu_{CZ}(\gamma_{k-1}) + 4$, γ_k is the k-th iterate of a simple orbit γ.

Theorem (N.) \[\partial^2 = 0, \] invariance under choice of \tilde{J} and dynamically separated α.

Jo Nelson

Cylindrical contact homology in dimension 3
Hope: the big reveal

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation
Hope: the big reveal

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation
Hope: the big reveal

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_α has only contractible orbits.
Hope: the big reveal

- Automatic transversality results of Wendl, Hutchings, and Taubes in dimension 3.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(ξ) = 0$. For today restrict to when $R_α$ has only contractible orbits. We say a contact form is **dynamically separated** whenever

(i) All closed simple contractible Reeb orbits $γ$ satisfy $3 \leq μ_{CZ}(γ) \leq 5$.

Jo Nelson

Cylindrical contact homology in dimension 3
Hope: the big reveal

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_α has only contractible orbits. We say a contact form is **dynamically separated** whenever

(i) All closed simple contractible Reeb orbits γ satisfy $3 \leq \mu_{CZ}(\gamma) \leq 5$.
(ii) $\mu_{CZ}(\gamma^k) = \mu_{CZ}(\gamma^{k-1}) + 4$, γ^k is the k-th iterate of a simple orbit γ.

Theorem (N.) $\partial^2 = 0$, invariance under choice of \tilde{J} and dynamically separated α.

Jo Nelson
Cylindrical contact homology in dimension 3
Hope: the big reveal

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_α has only contractible orbits. We say a contact form is **dynamically separated** whenever

(i) All closed simple contractible Reeb orbits γ satisfy $3 \leq \mu_{CZ}(\gamma) \leq 5$.

(ii) $\mu_{CZ}(\gamma^k) = \mu_{CZ}(\gamma^{k-1}) + 4$, γ^k is the k-th iterate of a simple orbit γ.

Theorem (N.)

$\partial^2 = 0$, *invariance under choice of \tilde{J} and dynamically separated α.*
A better reveal

Jo Nelson

Cylindrical contact homology in dimension 3
A better reveal

Do more index calculations
Learn some intersection theory
Team up with Hutchings

Remaining obstruction to $\partial^2 = 0$ can be excluded!

Definition

A nondegenerate $(M^3, \xi = \ker \alpha)$ is dynamically convex whenever $c_1(\xi) |_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \geq 3$.

Any convex hypersurface transverse to the radial vector field Y in (\mathbb{R}^4, ω_0) admits a dynamically convex contact form $\alpha := \omega_0(Y, \cdot)$.

Theorem (Hutchings-N.)

If (M^3, α) is dynamically convex and every contractible Reeb orbit γ has $\mu_{CZ}(\gamma) = 3$ only if γ is simple then $\partial^2 = 0$.
A better reveal

- Do more index calculations

\[\gamma \]

Definition

A nondegenerate \((M^3, \xi = \ker \alpha)\) is dynamically convex whenever \(c_1(\xi) \mid_{\pi^2(M)} = 0\) and every contractible \(\gamma\) satisfies \(\mu_{\text{CZ}}(\gamma) \geq 3\).

Any convex hypersurface transverse to the radial vector field \(Y\) in \((\mathbb{R}^4, \omega_0)\) admits a dynamically convex contact form \(\alpha := \omega_0(Y, \cdot)\).

Theorem (Hutchings-N.)

If \((M^3, \alpha)\) is dynamically convex and every contractible Reeb orbit \(\gamma\) has \(\mu_{\text{CZ}}(\gamma) = 3\) only if \(\gamma\) is simple then \(\partial^2 = 0\).
A better reveal

- Do more index calculations
- Learn some intersection theory

\[\partial^2 = 0 \]

\[\gamma_{d+1} \text{ ind} = 0 \]

Definition

A nondegenerate \((M^3, \xi = \ker \alpha)\) is dynamically convex whenever \(c_1(\xi) |_{\pi^2(M)} = 0\) and every contractible \(\gamma\) satisfies \(\mu_{CZ}(\gamma) \geq 3\).

Any convex hypersurface transverse to the radial vector field \(Y\) in \((\mathbb{R}^4, \omega_0)\) admits a dynamically convex contact form \(\alpha := \omega_0(Y, \cdot)\).

Theorem (Hutchings-N.)

If \((M^3, \alpha)\) is dynamically convex and every contractible Reeb orbit \(\gamma\) has \(\mu_{CZ}(\gamma) = 3\) only if \(\gamma\) is simple then \(\partial^2 = 0\).
A better reveal

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings

\[\partial^2 = 0 \]

\[\gamma_{d+1} \ind = 0 \]

\[\gamma^2 \gamma_d \theta_0 \]

Definition

A nondegenerate \((M_3, \xi = \ker \alpha)\) is dynamically convex whenever \(c_1(\xi) | \pi_2(M) = 0\) and every contractible \(\gamma\) satisfies \(\mu \text{CZ}(\gamma) \geq 3\).

Any convex hypersurface transverse to the radial vector field \(Y\) in \((\mathbb{R}^4, \omega_0)\) admits a dynamically convex contact form \(\alpha := \omega_0(Y, \cdot)\).

Theorem (Hutchings-N.)

If \((M_3, \alpha)\) is dynamically convex and every contractible Reeb orbit \(\gamma\) has \(\mu \text{CZ}(\gamma) = 3\) only if \(\gamma\) is simple then \(\partial^2 = 0\).
Do more index calculations
Learn some intersection theory
Team up with Hutchings
Remaining obstruction to $\partial^2 = 0$ can be excluded!
Do more index calculations
Learn some intersection theory
Team up with Hutchings
Remaining obstruction to $\partial^2 = 0$ can be excluded!
A better reveal

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^2 = 0$ can be excluded!

Definition

A nondegenerate $(M^3, \xi = \ker \alpha)$ is **dynamically convex** whenever

- $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \geq 3$.
A better reveal

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^2 = 0$ can be excluded!

Definition

A nondegenerate $(M^3, \xi = \ker \alpha)$ is **dynamically convex** whenever

- $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \geq 3$.

Any convex hypersurface transverse to the radial vector field Y in (\mathbb{R}^4, ω_0) admits a dynamically convex contact form $\alpha := \omega_0(Y, \cdot)$.
Do more index calculations
Learn some intersection theory
Team up with Hutchings
Remaining obstruction to $\partial^2 = 0$ can be excluded!

Definition

A nondegenerate $(M^3, \xi = \ker \alpha)$ is **dynamically convex** whenever
- $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \geq 3$.

Any convex hypersurface transverse to the radial vector field Y in (\mathbb{R}^4, ω_0) admits a dynamically convex contact form $\alpha := \omega_0(Y, \cdot)$.

Theorem (Hutchings-N.)

*If (M^3, α) is dynamically convex and every contractible Reeb orbit γ has $\mu_{CZ}(\gamma) = 3$ only if γ is simple then $\partial^2 = 0$.***
Too legit to quit

Still stuck on Invariance....

Throw in the entire kitchen sink

Non-equivariant formulations,
domain dependent almost
complex structures,
obstruction bundle gluing

Family Floer homology constructions to get an
S^1-equivariant

theory which should be
$SH_{S^1}^*$

Tensor with Q to get back
CH^*

Theorem (Hutchings-N; in progress)

INVARIANCE! Obtained for dynamically convex
(M, α) wherein a
contractible γ has
$\mu_{CZ}(\gamma) = 3$ only if
γ is simple.

Jo Nelson

Cylindrical contact homology in dimension 3
Still stuck on Invariance....
Still stuck on Invariance....

- Throw in the entire kitchen sink
Too legit to quit

Still stuck on Invariance....

- Throw in the entire kitchen sink
- Non-equivariant formulations,
Still stuck on Invariance....

- Throw in the entire kitchen sink
- Non-equivariant formulations, domain dependent almost complex structures,
Still stuck on Invariance....

- Throw in the entire kitchen sink
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing

Theorem (Hutchings-N; in progress) INVARIANCE! Obtained for dynamically convex (M_3, α) wherein a contractible γ has $\mu_{\text{CZ}}(\gamma) = 3$ only if γ is simple.
Still stuck on Invariance....

- Throw in the entire kitchen sink
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- Family Floer homology constructions to get an S^1-equivariant theory which should be $SH_{*}^{S^1, +}$ over \mathbb{Z}.
Still stuck on Invariance....

- Throw in the entire kitchen sink
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- Family Floer homology constructions to get an S^1-equivariant theory which should be $SH_{*,+}^{S^1}$ over \mathbb{Z}.
- Tensor with \mathbb{Q} to get back CH_{*}

Theorem (Hutchings-N; in progress)

INVARIANCE! Obtained for dynamically convex (M^3, α) wherein a contractible γ has $\mu_{CZ}(\gamma) = 3$ only if γ is simple.
Commutations for Seifert fiber spaces
Onwards

- Computations for Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology
Onwards

- Computations for Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology

- Look at dimensions > 3??
Onwards

- Computations for Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology

- Look at dimensions > 3??
- Other dynamical questions involving contact structures
The end!

Thanks!

E(u) := sup \int_{\Sigma} u^* \omega_{\phi}.