Cylindrical contact homology as a well-defined homology?

Jo Nelson

Columbia University and the IAS

IAS, September 30, 2013
What is a contact manifold?

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...
A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...
A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

If α is a 1-form on M and

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form
- $\Leftrightarrow d\alpha|_\xi$ is nondegenerate

then $\xi := \ker \alpha$ is a contact structure.
What is a contact manifold?

A **contact structure** ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

If α is a 1-form on M and

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form
- $d\alpha|_\xi$ is nondegenerate

then $\xi := \ker\alpha$ is a contact structure.

Above:

\[\alpha = dz - ydx \]
Choose a contact form α.

Definition

The Reeb vector field R_α is uniquely determined by

- $\alpha(R_\alpha) = 1$,
- $d\alpha(R_\alpha, \cdot) = 0$.

Reeb orbits are Hopf fibers of S^3, $\alpha_0 = i^2 (ud\bar{u} - \bar{u} du + vd\bar{v} - \bar{v} dv)$.
Choose a contact form α.

Definition

The Reeb vector field R_α is uniquely determined by

- $\alpha(R_\alpha) = 1,$
- $d\alpha(R_\alpha, \cdot) = 0.$

Reeb orbits are Hopf fibers of S^3,

Patrick Massot

http://www.nilesjohnson.net/hopf.html

Jo Nelson

Cylindrical contact homology as a well-defined homology?
Choose a contact form α.

Definition

The Reeb vector field R_α is uniquely determined by

- $\alpha(R_\alpha) = 1$,
- $d\alpha(R_\alpha, \cdot) = 0$.

Reeb orbits are Hopf fibers of S^3, $\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + v d\bar{v} - \bar{v} dv)$

Patrick Massot

http://www.nilesjohnson.net/hopf.html
A dream for a chain complex

Assume: M compact and α nondegenerate
Assume: M compact and α nondegenerate

“Do” Morse theory on

$$\mathcal{A} : C^\infty(S^1, M) \to \mathbb{R},$$

$$\gamma \mapsto \int_{\gamma} \alpha.$$
A dream for a chain complex

Assume: M compact and α nondegenerate

“Do” Morse theory on

$$A : \ C^\infty(S^1, M) \to \mathbb{R},$$

$$\gamma \mapsto \int_{\gamma} \alpha.$$

Proposition

$$\gamma \in \text{Crit}(A) \iff \gamma \text{ is a closed Reeb orbit}.$$
A dream for a chain complex

Assume: M compact and α nondegenerate

“Do” Morse theory on

$$\mathcal{A} : C^\infty(S^1, M) \rightarrow \mathbb{R},
\gamma \mapsto \int_\gamma \alpha.$$

Proposition

$\gamma \in \text{Crit}(\mathcal{A}) \iff \gamma$ is a closed Reeb orbit.

• Grading on orbits given by Conley-Zehnder index,
A dream for a chain complex

Assume: \(M \) compact and \(\alpha \) nondegenerate

“Do” Morse theory on

\[
A : \ C^\infty(S^1, M) \to \mathbb{R},
\gamma \mapsto \int_\gamma \alpha.
\]

Proposition

\(\gamma \in \text{Crit}(A) \iff \gamma \) is a closed Reeb orbit.

Grading on orbits given by Conley-Zehnder index,
A dream for a chain complex

Assume: M compact and α nondegenerate

“Do” Morse theory on

$A : C^\infty(S^1, M) \to \mathbb{R},$

$\gamma \mapsto \int_{\gamma} \alpha.$

Proposition

$\gamma \in \text{Crit}(A) \iff \gamma$ is a closed Reeb orbit.

- Grading on orbits given by Conley-Zehnder index,
- $C_*(\alpha) = \{\text{closed Reeb orbits}\} \setminus \{\text{bad Reeb orbits}\}$
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in M(\gamma_+; \gamma_-)$, where γ_\pm are Reeb orbits of periods T_\pm.
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_\pm are Reeb orbits of periods T_\pm.

$$u := (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J})$$

$$\bar{\partial}_{j, \tilde{J}} u := du + \tilde{J} \circ du \circ j \equiv 0$$
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in M(\gamma_+; \gamma_-)$, where γ_\pm are Reeb orbits of periods T_\pm.

\[
u := (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \quad \lim_{s \to \pm \infty} a(s, t) = \pm \infty
\]

\[
\bar{\partial}_{j, \tilde{J}} u := du + \tilde{J} \circ du \circ j \equiv 0 \quad \lim_{s \to \pm \infty} f(s, t) = \gamma_\pm(T_\pm t)
\]

up to reparametrization.
Gradient flow lines no go; use finite energy pseudoholomorphic cylinders \(u \in \mathcal{M}(\gamma_+; \gamma_-) \), where \(\gamma_\pm \) are Reeb orbits of periods \(T_\pm \).

\[
u \coloneqq (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \quad \lim_{s \to \pm \infty} a(s, t) = \pm \infty
\]

\[
\bar{\partial}_j \tilde{J} u \coloneqq du + \tilde{J} \circ du \circ j \equiv 0 \quad \lim_{s \to \pm \infty} f(s, t) = \gamma_\pm(T_\pm t)
\]
up to reparametrization.

\(\bar{\partial} : C_* \to C_{*-1} \) is a weighted count of pseudoholomorphic cylinders up to reparametrization.
A dream...

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_\pm are Reeb orbits of periods T_\pm.

\[u := (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times \mathcal{M}, \tilde{J}) \]
\[\lim_{s \to \pm \infty} a(s, t) = \pm \infty \]
\[\partial_j, \tilde{j} \ u := du + \tilde{J} \circ du \circ j \equiv 0 \]
\[\lim_{s \to \pm \infty} f(s, t) = \gamma_\pm(T_\pm t) \]
up to reparametrization.

- $\partial : C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

Conjeorem (Eliashberg-Givental-Hofer '00)

Assume a minimal amount of things. Then $(C_*(\alpha), \partial))$ forms a chain complex and $H(C_*(\alpha), \partial)$ is independent of α and \tilde{J}.
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+; \gamma_-)$ more than a letter?
Transversality for multiply covered curves...good luck
Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
$\mathcal{M}(\gamma_+;\gamma_-)$ can have nonpositive virtual dimension!?!
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+; \gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+; \gamma_-)$ can have nonpositive virtual dimension!?!?
- Compactness issues are severe
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have nonpositive virtual dimension!?!?
- Compactness issues are severe

Desired compactification
The nightmare of contact homology

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+; \gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+; \gamma_-)$ can have nonpositive virtual dimension!?!?
- Compactness issues are severe

Desired compactification

Adding to 2 becomes hard
Automatic transversality results of Wendl, Hutchings, and Taubes in \textbf{dimension 3}.
Hope

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index.
Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.

Understand basic arithmetic and the Conley-Zehnder index.

Realize your original thesis project contained a useful geometric perturbation.
Hope

- Automatic transversality results of Wendl, Hutchings, and Taubes in \textbf{dimension 3}.
- Understand basic arithmetic and the Conley-Zehnder index.
- Realize your original thesis project contained a useful geometric perturbation.

\[
\begin{align*}
\text{Assume } c_1(\xi) &= 0. \\
\text{For today restrict to when } R^\alpha \text{ has only contractible orbits.}
\end{align*}
\]

We say a contact form is dynamically separated whenever the following hold:

(i) All closed simple contractible Reeb orbits γ satisfy $3 \leq \mu_{CZ}(\gamma) \leq 5$.

(ii) $\mu_{CZ}(\gamma_k) = \mu_{CZ}(\gamma_{k-1}) + 4$, γ_k is the k-th iterate of a simple orbit γ.
• Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
• Understand basic arithmetic and the Conley-Zehnder index
• Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_α has only contractible orbits.
• Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.

• Understand basic arithmetic and the Conley-Zehnder index

• Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_α has only contractible orbits. We say a contact form is **dynamically separated** whenever the following hold

(i) All closed simple contractible Reeb orbits γ satisfy $3 \leq \mu_{CZ}(\gamma) \leq 5$.
Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.

Understand basic arithmetic and the Conley-Zehnder index

Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_α has only contractible orbits. We say a contact form is **dynamically separated** whenever the following hold

(i) All closed simple contractible Reeb orbits γ satisfy $3 \leq \mu_{CZ}(\gamma) \leq 5$.

(ii) $\mu_{CZ}(\gamma^k) = \mu_{CZ}(\gamma^{k-1}) + 4$, γ^k is the k-th iterate of a simple orbit γ.

Jo Nelson

Cylindrical contact homology as a well-defined homology?
Simple singularities appear as origin of \mathbb{C}^2/Γ, $\Gamma \subset SU_2(\mathbb{C})$. The origin is an isolated quotient singularity. The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f - 1\}_\Gamma(0) \subset \mathbb{C}^3$. The link is $L := S^3 \cap \{f - 1\}_\Gamma(0)$, take $\xi_L = T_L \cap J_0(T_L)$. S^3's contact structure descends to S^3/Γ, recall: $\alpha_0 = i_2(ud\bar{u} - \bar{u}u + vd\bar{v} - \bar{v}v)$. Lemma (N) $(S^3/\Gamma, \xi_{S^3/\Gamma})$ is contactomorphic to (L, ξ_L). Topology of link tells us nature of singularity... Are there dynamical implications?
Simple singularities appear as origin of \mathbb{C}^2/Γ, $\Gamma \subset SU_2(\mathbb{C})$.

The origin is an isolated quotient singularity.
Simple singularities appear as origin of \mathbb{C}^2/Γ, $\Gamma \subset SU_2(\mathbb{C})$.

The origin is an isolated quotient singularity.

The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f^{-1}_\Gamma(0)\} \subset \mathbb{C}^3$.

Lemma (N) $(\mathbb{S}^3/\Gamma, \xi_{\mathbb{S}^3/\Gamma})$ is contactomorphic to $(\mathcal{L}, \xi_\mathcal{L})$.

Topology of link tells us nature of singularity... Are there dynamical implications?
Simple singularities appear as origin of \mathbb{C}^2/Γ, $\Gamma \subset SU_2(\mathbb{C})$.

The origin is an isolated quotient singularity.

The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f^{-1}_\Gamma(0)\} \subset \mathbb{C}^3$.

The link is $L := S^5 \cap \{f^{-1}_\Gamma(0)\}$, take $\xi_L = TL \cap J_0(TL)$.

Links of simple singularities
Simple singularities appear as origin of \mathbb{C}^2/Γ, $\Gamma \subset SU_2(\mathbb{C})$.

The origin is an isolated quotient singularity.

The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f^{-1}_\Gamma(0)\} \subset \mathbb{C}^3$.

The link is $L := S^5 \cap \{f^{-1}_\Gamma(0)\}$, take $\xi_L = TL \cap J_0(TL)$.

S^3's contact structure descends to S^3/Γ, recall:

$$\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$$
Links of simple singularities

- **Simple singularities** appear as origin of \mathbb{C}^2/Γ, $\Gamma \subset SU_2(\mathbb{C})$.
- The origin is an isolated quotient singularity.
- The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f^{-1}_\Gamma(0)\} \subset \mathbb{C}^3$.
- The link is $L := S^5 \cap \{f^{-1}_\Gamma(0)\}$, take $\xi_L = TL \cap J_0(TL)$.
- S^3's contact structure descends to S^3/Γ, recall:
 $$\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$$

Lemma (N)

$(S^3/\Gamma, \xi_{S^3/\Gamma})$ is contactomorphic to (L, ξ_L).
Simple singularities appear as origin of \(\mathbb{C}^2 / \Gamma \), \(\Gamma \subset SU_2(\mathbb{C}) \).

The origin is an isolated quotient singularity.

The variety \(\mathbb{C}^2 / \Gamma \) can be identified with the hypersurface \(\{ f^{-1}_\Gamma(0) \} \subset \mathbb{C}^3 \).

The link is \(L := S^5 \cap \{ f^{-1}_\Gamma(0) \} \), take \(\xi_L = TL \cap J_0(TL) \).

\(S^3 \)'s contact structure descends to \(S^3 / \Gamma \), recall:
\[
\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).
\]

Lemma (N)

\((S^3 / \Gamma, \xi_{S^3 / \Gamma}) \) is contactomorphic to \((L, \xi_L) \).

Topology of link tells us nature of singularity...
Simple singularities appear as origin of \mathbb{C}^2/Γ, $\Gamma \subset SU_2(\mathbb{C})$.

The origin is an isolated quotient singularity.

The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f_\Gamma^{-1}(0)\} \subset \mathbb{C}^3$.

The link is $L := S^5 \cap \{f_\Gamma^{-1}(0)\}$, take $\xi_L = TL \cap J_0(TL)$.

S^3’s contact structure descends to S^3/Γ, recall:

$$\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$$

Lemma (N)

$$(S^3/\Gamma, \xi_{S^3/\Gamma}) \text{ is contactomorphic to } (L, \xi_L).$$

Topology of link tells us nature of singularity...Are there dynamical implications?
Simple singularities appear as origin of \mathbb{C}^2/Γ, $\Gamma \subset SU_2(\mathbb{C})$.

The origin is an isolated quotient singularity.

The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f^{-1}_\Gamma(0)\} \subset \mathbb{C}^3$.

The link is $L := S^5 \cap \{f^{-1}_\Gamma(0)\}$, take $\xi_L = TL \cap J_0(TL)$.

S^3’s contact structure descends to S^3/Γ, recall:

$$\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$$

Lemma (N)

$(S^3/\Gamma, \xi_{S^3/\Gamma})$ is contactomorphic to (L, ξ_L).

Topology of link tells us nature of singularity...Are there dynamical implications?
A fortuitous dynamical relationship

\[\alpha' = (1 + \epsilon h^* H) \alpha_0 \]
A fortuitous dynamical relationship

\[\alpha' = (1 + \epsilon h^* H)\alpha_0 \]

\[R' = \frac{1}{(1+\epsilon h^* H)} R_0 + \frac{\epsilon}{(1+\epsilon h^* H)^2} \tilde{X}_H. \]
A fortuitous dynamical relationship

\[
\begin{align*}
S^3 & \xrightarrow{h} S^2 \xrightarrow{H} \mathbb{R} \\
\alpha' &= (1 + \epsilon h^* H) \alpha_0 \\
R' &= \frac{1}{(1 + \epsilon h^* H)} R_0 + \frac{\epsilon}{(1 + \epsilon h^* H)^2} \tilde{X}_H. \\
X_H &= J_0 \nabla H,
\end{align*}
\]
A fortuitous dynamical relationship

- $\alpha' = (1 + \epsilon h^* H)\alpha_0$
- $R' = \frac{1}{(1 + \epsilon h^* H)} R_0 + \frac{\epsilon}{(1 + \epsilon h^* H)^2} \tilde{X}_H.$
- $X_H = J_0 \nabla H$, use symmetry of Γ to pick H
A fortuitous dynamical relationship

\[
S^3 \\
\downarrow h \\
S^2 \rightarrow \mathbb{R} \\
\]

- \(\alpha' = (1 + \epsilon h^* H) \alpha_0 \)
- \(R' = \frac{1}{(1 + \epsilon h^* H)} R_0 + \frac{\epsilon}{(1 + \epsilon h^* H)^2} \tilde{X}_H. \)
- \(X_H = J_0 \nabla H, \) use symmetry of \(\Gamma \) to pick \(H \)

For \(\Gamma = \mathbb{T}^* (E_6\text{-type}) \) take \(H = xyz. \)
A fortuitous dynamical relationship

\[S^3 \xrightarrow{h} S^2 \xrightarrow{H} \mathbb{R} \]

- \(\alpha' = (1 + \epsilon h^* H)\alpha_0 \)
- \(R' = \frac{1}{(1+\epsilon h^* H)} R_0 + \frac{\epsilon}{(1+\epsilon h^* H)^2} \tilde{X}_H. \)
- \(X_H = J_0 \nabla H, \) use symmetry of \(\Gamma \) to pick \(H \)

For \(\Gamma = \mathbb{T}^* \) (\(E_6 \)-type) take \(H = xyz \).

\textit{Spin}(3) \cong SU(2, \mathbb{C}) \quad \text{2:1} \quad SO(3)

Cylindrical contact homology as a well-defined homology?
A fortuitous dynamical relationship

\[S^3 \]
\[h \downarrow \]
\[S^2 \rightarrow H \rightarrow \mathbb{R} \]

- \[\alpha' = (1 + \epsilon h^* H)\alpha_0 \]
- \[R' = \frac{1}{1+\epsilon h^* H} R_0 + \frac{\epsilon}{(1+\epsilon h^* H)^2} \tilde{X}_H. \]
- \[X_H = J_0 \nabla H, \text{ use symmetry of } \Gamma \text{ to pick } H \]

For \(\Gamma = \mathbb{T}^* \ (E_6\text{-type}) \) take \(H = xyz \).

\[Spin(3) \cong SU(2, \mathbb{C}) \]

2:1

\[SO(3) \]

\[\nabla H \]
A fortuitous dynamical relationship

\[\alpha' = (1 + \epsilon h^* H)\alpha_0\]

\[R' = \frac{1}{(1+\epsilon h^* H)}R_0 + \frac{\epsilon}{(1+\epsilon h^* H)^2}\tilde{X}_H.\]

\[X_H = J_0 \nabla H,\] use symmetry of \(\Gamma\) to pick \(H\)

For \(\Gamma = \mathbb{T}^* (E_6\text{-type})\) take \(H = xyz\).

\(\text{Spin}(3) \cong SU(2, \mathbb{C})\)

\(2:1\)

\(\nabla H\)

\(X_H\)
A fortuitous dynamical relationship

\[S^3 \xrightarrow{h} S^2 \xrightarrow{H} \mathbb{R} \]

- \(\alpha' = (1 + \epsilon h^* H) \alpha_0 \)
- \(R' = \frac{1}{(1 + \epsilon h^* H)} R_0 + \frac{\epsilon}{(1 + \epsilon h^* H)^2} \tilde{X}_H. \)
- \(X_H = J_0 \nabla H, \) use symmetry of \(\Gamma \) to pick \(H \)

For \(\Gamma = \mathbb{T}^* \) (\(E_6 \)-type) take \(H = xyz. \)

\[Spin(3) \cong SU(2, \mathbb{C}) \]

\[2:1 \]

\[SO(3) \]

Reeb orbits which generate chain complex correspond to presentation of \(S^3/\Gamma \) as a Seifert fiber space!
Other Seifert fiber spaces
Other Seifert fiber spaces

Connections to Chen-Ruan orbifold homology and string topology
Other Seifert fiber spaces
Connections to Chen-Ruan orbifold homology and string topology
Precise nature of relationship with symplectic homology
- Other Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology
- Precise nature of relationship with symplectic homology

- Extending work to hold in more generality in dimension 3
Other Seifert fiber spaces
Connections to Chen-Ruan orbifold homology and string topology
Precise nature of relationship with symplectic homology

Extending work to hold in more generality in dimension 3
Look at dimensions > 3??
Other Seifert fiber spaces
Connections to Chen-Ruan orbifold homology and string topology
Precise nature of relationship with symplectic homology

Extending work to hold in more generality in dimension 3
Look at dimensions > 3?
Other dynamical questions involving contact structures
Thanks!