# Recently Added

## Potential Automorphy

I will introduce l-adic representations and what it means for them to be automorphic, talk about potential automorphy as an alternative to automorphy, explain what can currently be proved (but not how) and discuss what seem to me the important open problems. This should serve as an introduction to half the special year for non-number theorists. The other major theme will likely be the `p-adic Langlands program', which I will not address (but perhaps someone else will).

## Even Galois Representations and the Fontaine-Mazur conjecture

## Joint IAS/PU Number Theory Seminar

## Some aspects of the p-ADIC local Langlands correspondence for $GL(2,Q_p)$

## Lecture 1

## Symplectic Homogenization

Given a Hamiltonian on $T^n\times R^n$, we shall explain how the sequence of suitably rescaled (i.e. homogenized) Hamiltonians, converges, for a suitably defined symplectic metric. We shall then explain some applications, in particular to symplectic topology and invariant measures of dynamical systems.