Recently Added

Scrambling Time and Causal Structure in a Schwarzchild Black Hole

Peter Shor
December 4, 2018

Please Note: This workshop is not open to the general public, but only to active researchers.

This workshop will focus on quantum aspects of black holes, focusing on applying ideas from quantum information theory.

This meeting is sponsored by the “It from Qubit collaboration” and is followed by the collaboration meeting in New York City.

Entanglement as a Connection for Holographic Spacetimes

Lampros Lamprou
December 4, 2018

Please Note: This workshop is not open to the general public, but only to active researchers.

This workshop will focus on quantum aspects of black holes, focusing on applying ideas from quantum information theory.

This meeting is sponsored by the “It from Qubit collaboration” and is followed by the collaboration meeting in New York City.

Global results related to scalar curvature and isoperimetry

Otis Chodosh
Princeton University; Veblen Research Instructor, School of Mathematics
December 4, 2018
I will first survey some recent progress on global problems related to scalar curvature and area/volume, focusing in particular on scale breaking phenomena in such problems. I will then discuss the role of the Hawking mass in the resolution of this scale-breaking issue for the stable CMC uniqueness problem in asymptotically Schwarzschild manifolds (joint work with M. Eichmair) and possibly mention some features of the isoperimetric problem in asymptotically Schwarzschild-anti-de Sitter manifolds (joint work with M. Eichmair, Y. Shi, J. Zhu).

Mean action of periodic orbits of area-preserving annulus diffeomorphisms

Morgan Weiler
University of California, Berkeley
December 3, 2018
An area-preserving diffeomorphism of an annulus has an "action function" which measures how the diffeomorphism distorts curves. The average value of the action function over the annulus is known as the Calabi invariant of the diffeomorphism, while the average value of the action function over a periodic orbit of the diffeomorphism is the mean action of the orbit.

Recent Progress on Zimmer's Conjecture

David Fisher
Indiana University, Bloomington; Member, School of Mathematics
December 3, 2018
Lattices in higher rank simple Lie groups are known to be extremely rigid. Examples of this are Margulis' superrigidity theorem, which shows they have very few linear represenations, and Margulis' arithmeticity theorem, which shows they are all constructed via number theory. Motivated by these and other results, in 1983 Zimmer made a number of conjectures about actions of these groups on compact manifolds and in a recent breakthrough with Brown and Hurtado we have proven many of them.

Branched conformal structures and the Dyson superprocess

Govind Menon
Brown University; Member, School of Mathematics
November 30, 2018

In the early 1920s, Loewner introduced a constructive approach to the Riemann mapping theorem that realized a conformal mapping as the solution to a differential equation. Roughly, the “input” to Loewner’s differential equation is a driving measure and the “output” is a family of nested, conformally equivalent domains. This theory was revitalized in the late 1990s by Schramm. The Schramm-Loewner evolution (SLE) is a stochastic family of slit mappings driven by Loewner’s equation when the driving measure is an atom executing Brownian motion.