Higher symplectic capacities

Kyler Siegel
Columbia University
February 25, 2019
I will describe a new family of symplectic capacities defined using rational symplectic field theory.
These capacities are defined in every dimension and give state of the art obstructions for various "stabilized" symplectic embedding problems such as one ellipsoid into another. They can also be described via symplectic cohomology and are related to counting pseudoholomorphic curves with tangency conditions. I will explain the basic idea of the construction and then give some computations, structural results, and applications.

Brief introduction to deep learning and the "Alchemy" controversy

Sanjeev Arora
February 22, 2019
Deep learning has led to rapid progress in open problems of artificial intelligence—recognizing images, playing Go, driving cars, automating translation between languages—and has triggered a new gold rush in the tech sector. But some scientists raise worries about slippage in scientific practices and rigor, likening the process to “alchemy.” How accurate is this perception? And what should the field do to combine rapid innovation with solid science and engineering?

Troubling Trends in ML Scholarship

Zachary Lipton
Carnegie Mellon University
February 22, 2019
Deep learning has led to rapid progress in open problems of artificial intelligence—recognizing images, playing Go, driving cars, automating translation between languages—and has triggered a new gold rush in the tech sector. But some scientists raise worries about slippage in scientific practices and rigor, likening the process to “alchemy.” How accurate is this perception? And what should the field do to combine rapid innovation with solid science and engineering?

The Epistemology of Deep Learning

Yann LeCun
Facebook, New York University
February 22, 2019
Deep learning has led to rapid progress in open problems of artificial intelligence—recognizing images, playing Go, driving cars, automating translation between languages—and has triggered a new gold rush in the tech sector. But some scientists raise worries about slippage in scientific practices and rigor, likening the process to “alchemy.” How accurate is this perception? And what should the field do to combine rapid innovation with solid science and engineering?

Reproducible, Reusable, and Robust Reinforcement Learning

Joelle Pineau
Facebook, McGill University
February 22, 2019
Deep learning has led to rapid progress in open problems of artificial intelligence—recognizing images, playing Go, driving cars, automating translation between languages—and has triggered a new gold rush in the tech sector. But some scientists raise worries about slippage in scientific practices and rigor, likening the process to “alchemy.” How accurate is this perception? And what should the field do to combine rapid innovation with solid science and engineering?

Institute Welcome

Robbert Dijkgraaf
IAS
February 22, 2019
Deep learning has led to rapid progress in open problems of artificial intelligence—recognizing images, playing Go, driving cars, automating translation between languages—and has triggered a new gold rush in the tech sector. But some scientists raise worries about slippage in scientific practices and rigor, likening the process to “alchemy.” How accurate is this perception? And what should the field do to combine rapid innovation with solid science and engineering?

Surrogates

Shai Shalev-Shwartz
Hebrew University of Jerusalem
February 22, 2019

Deep learning has led to rapid progress in open problems of artificial intelligence—recognizing images, playing Go, driving cars, automating translation between languages—and has triggered a new gold rush in the tech sector. But some scientists raise worries about slippage in scientific practices and rigor, likening the process to “alchemy.” How accurate is this perception? And what should the field do to combine rapid innovation with solid science and engineering?

Successes and Challenges in Neural Models for Speech and Language

Michael Collins
Google Research, Columbia University
February 22, 2019
Deep learning has led to rapid progress in open problems of artificial intelligence—recognizing images, playing Go, driving cars, automating translation between languages—and has triggered a new gold rush in the tech sector. But some scientists raise worries about slippage in scientific practices and rigor, likening the process to “alchemy.” How accurate is this perception? And what should the field do to combine rapid innovation with solid science and engineering?

Public programming: Panel discussion

Various Speakers
February 22, 2019
Deep learning has led to rapid progress in open problems of artificial intelligence—recognizing images, playing Go, driving cars, automating translation between languages—and has triggered a new gold rush in the tech sector. But some scientists raise worries about slippage in scientific practices and rigor, likening the process to “alchemy.” How accurate is this perception? And what should the field do to combine rapid innovation with solid science and engineering?