## Flows of vector fields: classical and modern

Camillo DeLellis

Faculty, School of Mathematics; IBM von Neumann Professor, School of Mathematics

April 13, 2020

Flows of vector fields: classical and modern

Camillo DeLellis

Faculty, School of Mathematics; IBM von Neumann Professor, School of Mathematics

April 13, 2020

Flows of vector fields: classical and modern

Leonid Polterovich

Tel Aviv University

April 10, 2020

Ke Li

Member, School of Mathematics

April 9, 2020

Meta-learning (or learning to learn) studies how to use machine learning to design machine learning methods themselves. We consider an optimization-based formulation of meta-learning that learns to design an optimization algorithm automatically, which we call Learning to Optimize. Surprisingly, it turns out that the most straightforward approach of learning such an algorithm, namely backpropagation, does not work. We explore the underlying reason for this failure, devise a solution based on reinforcement learning and discuss the open challenges in meta-learning.

Chao Li

Columbia University

April 9, 2020

The Kudla-Rapoport conjecture predicts a precise identity between the arithmetic intersection number of special cycles on unitary Rapoport-Zink spaces and the derivative of local representation densities of hermitian forms. It is a key local ingredient to establish the arithmetic Siegel-Weil formula and the arithmetic Rallis inner product formula, relating the height of special cycles on Shimura varieties to the derivative of Siegel Eisenstein series and L-functions. We will motivate this conjecture, explain a proof and discuss global applications.

Andrey Kupavskii

Member, School of Mathematics

April 7, 2020

In the talk, I will explain the algorithm (and its analysis) for testing whether a number is a prime, invented by Agrawal, Kayal, and Saxena.

Anant Sahai

University of California, Berkeley

April 7, 2020

A continuing mystery in understanding the empirical success of deep neural networks has been in their ability to achieve zero training error and yet generalize well, even when the training data is noisy and there are many more parameters than data points. Following the information-theoretic tradition of seeking understanding, this talk will share our four-part approach to shedding some light on this phenomenon.

James Cook

University of Toronto

April 6, 2020

I'll be presenting some joint work with Ian Mertz scheduled to appear at STOC 2020. The study of the Tree Evaluation Problem (TEP), introduced by S. Cook et al. (TOCT 2012), is a promising approach to separating L from P. Given a label in [k] at each leaf of a complete binary tree and an explicit function [k]^2 -> [k] for recursively computing the value of each internal node from its children, the problem is to compute the value at the root node.

Karen Uhlenbeck

The University of Texas at Austin; Distinguished Visiting Professor, School of Mathematics

April 6, 2020

Hilbert’s 23rd Problem is the last in his famous list of problems and is of a different character than the others. The description is several pages, and basically says that the calculus of variations is a subject which needs development. We will look in retrospect at one of the critical events in the calculus of variations: The point at which the critical role of dimension was understood, and the role that the Palais-Smale condition(1963) played in this understanding. I apologize that in its present state, the talk consists mostly of my reminiscences and lacks references.

Dan Cristofaro-Gardiner

Member, School of Mathematics

April 3, 2020

I will explain recent joint work proving that the group of compactly supported area preserving homeomorphisms of the two-disc is not a simple group; this answers the ”Simplicity Conjecture” in the affirmative. Our proof uses new spectral invariants, defined via periodic Floer homology, that I will introduce: these recover the Calabi invariant of monotone twists.

Richard Zemel

University of Toronto; Member, School of Mathematics

April 2, 2020

As deep learning systems become more prevalent in real-world applications it is essential to allow users to exert more control over the system. Exerting some structure over the learned representations enables users to manipulate, interpret, and even obfuscate the representations, and may also improve out-of-distribution generalization. In this talk I will discuss recent work that makes some steps towards these goals, aiming to represent the input in a factorized form, with dimensions of the latent space partitioned into task-dependent and task-independent components.