Fractional Perfect Matchings in Hypergraphs

Andrzej Rucinski
Adam Mickiewicz University in Polznan, Poland; Emory University
November 15, 2010

A perfect matching in a k-uniform hypergraph H = (V, E) on n vertices
is a set of n/k disjoint edges of H, while a fractional perfect matching
in H is a function w : E → [0, 1] such that for each v ∈ V we have
e∋v w(e) = 1. Given n ≥ 3 and 3 ≤ k ≤ n, let m be the smallest
integer such that whenever the minimum vertex degree in H satisfies
δ(H) ≥ m then H contains a perfect matching, and let m∗ be defined
analogously with respect to fractional perfect matchings. Clearly, m∗ ≤
m.

Panel Discussion: Secularism and Human Rights: Basic Human Rights in History, Philosophy, Political Science, and Sociology

Moderator: Harold Shapiro, President Emeritus and Professor of Economics and Public Affairs, Princeton University
Trustee, Institute for Advanced Study
November 13, 2010

Panelists:
Didier Fassin, James D. Wolfensohn Professor, School of Social Science
Jonathan Israel, Professor, School of Historical Studies
Avishai Margalit, George F. Kennan Professor, School of Historical Studies
Joan Wallach Scott, Harold F. Linder Professor, School of Social Science

Algebraic Cycles on Picarad Moduli Spaces of Abelian Varieties

Michael Rapoport
University of Bonn
November 11, 2010

Picard moduli spaces parametrize principally polarized abelian varieties with complex multiplication by the ring of integers in an imaginary-quadratic field. The loci where the abelian varieties split off an elliptic curve in a controlled way are divisors on this moduli space. We study the intersection behaviour of these divisors and prove in the non-degenerate case a relation between their intersection numbers and Fourier coefficients of the derivative at s=0 of a certain incoherent Eisenstein series for the unitary group. This is joint work with Kudla.

On the Realization of Some Degenerate Automorphic Forms on Certain Griffiths-Schmid Varieties

Henri Carayol
University of Strasbourg
November 10, 2010

GALOIS REPRESENTATIONS AND AUTOMORPHIC FORMS SEMINAR

Some automorphic forms, despite the fact they are algebraic, do not have any interpretation as cohomology classes on a Shimura variety: therefore nothing is known at present on their expected arithmetic properties. I shall explain how such forms appear to be related to more general objects (Griffiths-Schmid varieties) and discuss some related rationality questions.

An Elementary Proof of the Restricted Invertibility Theorem

Nikhil Srivastava
Institute for Advanced Study
November 9, 2010

We give an elementary proof of a generalization of Bourgain and Tzafriri's Restricted Invertibility Theorem, which says roughly that any matrix with columns of unit length and bounded operator norm has a large coordinate subspace on which it is well-invertible. Our proof gives the tightest known form of this result, is constructive, and provides a deterministic polynomial time algorithm for finding the desired subspace.