## Rank Bounds for Design Matrices with Applications to Combinatorial Geometry and Locally Correctable Codes

A (q,k,t)-design matrix is an m x n matrix whose pattern of zeros/non-zeros satisfies the following design-like condition: each row has at most q non-zeros, each column has at least k non-zeros and the supports of every two columns intersect in at most t rows. We prove that for $m\geq n$, the rank of any $(q,k,t)$-design matrix over a field of characteristic zero (or sufficiently large finite characteristic) is at least $n - (qtn/2k)^2$ .

Using this result we derive the following applications: