Translators for Mean Curvature Flow

David Hoffman
Stanford University
November 13, 2018
A translator for mean curvature flow is a hypersurface $M$ with the property that translation is a mean curvature flow. That is, if the translation is
$t\rightarrow M+t\vec{v}$, then the normal component of the velocity vector $\vec{v}$ is equal to the mean curvature $\vec{ H}$. I will discuss recent joint work with Tom Ilmanen, Francisco Martin and Brian White, specifically our classification of the the complete translators in $R^3$ that are graphical, and the construction of new families of complete translators that are not graphical.

Morse-Theoretic Aspects of the Willmore Energy

Alexis Michelat
ETH Zurich
November 13, 2018
We will present the project of using the Willmore elastic energy as a quasi-Morse function to explore
the topology of immersions of the 2-sphere into Euclidean spaces and explain how this relates to the
classical theory of complete minimal surfaces with finite total curvature.

This is partially a joint work in collaboration with Tristan Rivière.

Distinguishing fillings via dynamics of Fukaya categories

Yusuf Baris Kartal
Massachusetts Institute of Technology
November 12, 2018
Given a Weinstein domain $M$ and a compactly supported, exact symplectomorphism $\phi$, one can construct the open symplectic mapping torus $T_\phi$. Its contact boundary is independent of $\phi$ and thus $T_\phi$ gives a Weinstein filling of $T_0\times M$, where $T_0$ is the punctured 2-torus. In this talk, we will outline a method to distinguish $T_\phi$ from $T_0\times M$ using dynamics and deformation theory of their wrapped Fukaya categories.

Generic uniqueness of expanders with vanishing relative entropy

Felix Schulze
University College London
November 8, 2018

Abstract: We define a relative entropy for two expanding solutions to mean curvature flow of hypersurfaces, asymptotic to the same smooth cone at infinity. Adapting work of White and using recent results of Bernstein and Bernstein-Wang, we show that generically expanders with vanishing relative entropy are unique. This also implies that generically locally entropy minimizing expanders are unique. This is joint work with A. Deruelle.