## Abstract homomorphisms of algebraic groups and applications

I will discuss several results on abstract homomorphisms between the groups of rational points of algebraic groups. The main focus will be on a conjecture of Borel and Tits formulated in their landmark 1973 paper.

Our results settle this conjecture in several cases; the proofs make use of the notion of an algebraic ring. I will mention several applications to character varieties of finitely generated groups and representations of some non-arithmetic groups.

## Nonlinear dimensionality reduction for faster kernel methods in machine learning.

The Random Fourier Features (RFF) method (Rahimi, Recht, NIPS 2007) is one of the most practically successful techniques for accelerating computationally expensive nonlinear kernel learning methods. By quickly computing a low-rank approximation for any shift-invariant kernel matrix, RFF can serve as a preprocessing step to generically accelerate algorithms for kernel ridge regression, kernel clustering, kernel SVMs, and other benchmark data analysis tools.

## Cocycles, Lyapunov exponents, localization

This talk will be an introduction to the methods used in the study of spectral properties of Schroedinger operators with a potential defined via the action of an ergodic transformation. Open problems relating to Lyapunov exponents over a skew shift base will be discussed.

## The Virtues of Violence: Amphitheatres, Gladiators, and the Roman System of Values

## Outlier-Robust Estimation via Sum-of-Squares

We develop efficient algorithms for estimating low-degree moments of unknown distributions in the presence of adversarial outliers. The guarantees of our algorithms improve in many cases significantly over the best previous ones, obtained in recent works. We also show that the guarantees of our algorithms match information-theoretic lower-bounds for the class of distributions we consider. These better guarantees allow us to give improved algorithms for independent component analysis and learning mixtures of Gaussians in the presence of outliers.

## Locally Repairable Codes, Storage Capacity and Index Coding

## Some things you need to know about machine learning but didn't know whom to ask (the grad school version)

## Concentration inequalities for linear cocycles and their applications to problems in dynamics and mathematical physics

Given a measure preserving dynamical system, a real-valued observable determines a random process (by composing the observable with the iterates of the transformation). An important topic in ergodic theory is the study of the statistical properties of the corresponding sum process.

## Explicit, Epsilon-Balanced Codes Close to the Gilbert-Varshamov Bound

I will show an explicit construction of a binary error correcting code with relative distance $\frac{1-\epsilon}{2}$ and relative rate $\epsilon^{2+o(1)}$. This comes close to the Gilbert-Varshamov bound that shows such codes with rate $\epsilon^2$ exist, and theLP lower bound that shows rate $\frac{\epsilon^2}{\log \frac{1}{\epsilon}}$ is necessary. Previous explicit constructions had rate about$\epsilon^3$, and this is the first explicit construction to get that close to the Gilbert-Varshamov bound.

This talk will have two parts, on Monday and Tuesday.