Lectures by Faculty

Natalie Wolchover Interviews Freeman Dyson and Karen Uhlenbeck

Natalie Wolchover, Senior Writer, Quanta Magazine; Karen Uhlenbeck, Visiting Professor, School of Mathematics IAS; Freeman Dyson, Professor Emeritus, School of Natural Sciences IAS
May 29, 2019
Physics and mathematics seem to be in a pre-established harmony, as Gottfried Leibniz observed long ago. New ideas generated by mathematical researchers have often proved to be essential to physicists trying to discover the most basic laws of nature. Likewise, physicists have often generated new insights into advanced mathematics.

Univalence from a computer science point-of-view

Dan Licata
Wesleyan University
September 14, 2018
Abstract: One formal system for Voevodsky's univalent foundations is Martin-Löf's type theory. This type theory is the basis of proof assistants, such as Agda, Coq, and NuPRL, that are used not only for the formalization of mathematics, but in computer science for verification of programs, systems, and programming language designs and implementations. These applications rely on the fact that constructions in type theory can be interpreted constructively as programs.

A search for an algebraic equivalence analogue of motivic theories

Eric Friedlander
University of Southern California
September 13, 2018
Abstract: We reflect on mathematical efforts made years ago, initiated by Blaine Lawson and much influenced by Vladimir Voevodsky's work. In work with Lawson, Mazur, Walker, Suslin, and Haesemyer, a "semi-topological theory" for cohomology and K-theory of complex (or real) varieties has evolved which has led to a few computations and many conjectures.