An Application of the Universality Theorem for Tverberg Partitions

Tracking trajectories in Hamiltonian systems using holomorphic curve tools - Barney Bamham

Imre Barany
Renyi Institute, Hungary and UCL, London
March 18, 2019

We show that, as a consequence of a remarkable new result of
Attila P\'or on universal Tverberg partitions, any large-enough set
$P$ of points in $\Re^d$ has a $(d+2)$-sized subset whose Radon point
has half-space depth at least $c_d \cdot |P|$, where $c_d \in (0, 1)$
depends only on $d$. We then give an application of this result to
computing weak $\eps$-nets by random sampling. Joint work with Nabil