Zeev Dvir

Princeton University; von Neumann Fellow, School of Mathematics

October 31, 2017

A cap set in $(F_q)^n$ is a set not containing a three term arithmetic progression. Last year, in a surprising breakthrough, Croot-Lev-Pach and a follow up paper of Ellenberg-Gijswijt showed that such sets have to be of size at most $c^n$ with $c