## The SYK Model at Low Energies

Guy Gur-Ari

December 6, 2017

Guy Gur-Ari

December 6, 2017

Ahmed Almheiri

December 6, 2017

Douglas Stanford

December 6, 2017

Aron Wall

December 6, 2017

Ulrich Marzolph

December 7, 2017

Alex Kontorovich

Rutgers University; von Neumann Fellow, School of Mathematics

December 8, 2017

We will explain how the circle method can be used in the setting of thin orbits, by sketching the proof (joint with Bourgain) of the asymptotic local-global principle for Apollonian circle packings. We will mention extensions of this method due to Zhang and Fuchs-Stange-Zhang to certain crystallographic circle packings, as well as the method's limitations.

Alexander Gamburd

The Graduate Center, The City University of New York

December 8, 2017

Markoff triples are integer solutions of the equation $x^2+y^2+z^2 = 3xyz$ which arose in Markoff's spectacular and fundamental work (1879) on diophantine approximation and has been henceforth ubiquitous in a tremendous variety of different fields in mathematics and beyond.

Amit Ghosh

Oklahoma State University

December 8, 2017

We report on some recent work with Peter Sarnak. For integers $k$, we consider the affine cubic surfaces $V_k$ given by $M(x) = x_1^2 + x_2 + x_3^2 − x_1 x_2 x_3 = k$. Then for almost all $k$, the Hasse Principle holds, namely that $V_k(Z)$ is non-empty if $V_k(Z_p)$ is non-empty for all primes $p$. Moreover there are infinitely many $k$'s for which it fails. There is an action of a non-linear group on the integral points, producing finitely many orbits. For most $k$, we obtain an exact description of these orbits, the number of which we call "class numbers".

Ryan Ronan

Baruch College, The City University of New York

December 8, 2017

For integer parameters $n \geq 3$, $a \geq 1$, and $k \geq 0$ the Markoff-Hurwitz equation is the diophantine equation

\[ x_1^2 + x_2^2 + \cdots + x_n^2 = ax_1x_2 \cdots x_n + k.\]

Junho Peter Whang

Princeton University

December 8, 2017

The classical affine cubic surface of Markoff has a well-known interpretation as a moduli space for local systems on the once-punctured torus. We show that the analogous moduli spaces for general topological surfaces form a rich family of log Calabi-Yau varieties, where a structure theorem for their integral points can be established using mapping class group descent. Related analysis also yields new results on the arithmetic of algebraic curves in these moduli spaces, including finiteness of imaginary quadratic integral points for non-special curves.