Computations of Heegaard Floer Homologies

Andras Stipsicz
Renyi Institute of Mathematics, Hungarian Academy of Sciences
April 9, 2012

Heegaard Floer homology groups were recently introduced by Ozsvath and Szabo to study properties of 3-manifolds and knots in them. The definition of the invariants rests on delicate holomorphic geometry, making the actual computations cumbersome. In the lecture we will recall the basic definitions and theorems of the theory, and show how to define the simplest version in a purely combinatorial manner. For a special class of 3-manifolds the more general version will be presented by simple combinatorial ideas through lattice homology of Nemethi.

Computations of Heegaard Floer Homologies

Andras Stipsicz
Renyi Institute of Mathematics, Hungarian Academy of Sciences
April 9, 2012

Heegaard Floer homology groups were recently introduced by Ozsvath and Szabo to study properties of 3-manifolds and knots in them. The definition of the invariants rests on delicate holomorphic geometry, making the actual computations cumbersome. In the lecture we will recall the basic definitions and theorems of the theory, and show how to define the simplest version in a purely combinatorial manner. For a special class of 3-manifolds the more general version will be presented by simple combinatorial ideas through lattice homology of Nemethi.

List-Decoding Multiplicity Codes

Swastik Kopparty
Rutgers University
April 10, 2012

We study the list-decodability of multiplicity codes.
These codes, which are based on evaluations of high-degree polynomials and their derivatives, have rate approaching 1 while simultaneously allowing for sublinear-time error-correction. In this paper, we show that multiplicity codes also admit powerful list-decoding and local list-decoding algorithms correcting a large fraction of errors.