## Existence of Small Families of t-wise Independent Permutations and t-Designs Via Local Limit Theorems

We show existence of rigid combinatorial objects that previously were not known to exist. Specifically, we consider two families of objects:

1. A family of permutations on n elements is t-wise independent if it acts uniformly on tuples of t elements. Constructions of small families of t-wise independent permutations are known only for \( t=1,2,3 \) . We show that there exist small families of t-wise independent permutations for all t , whose size is \( n^{O(t)} \) .