## Periods Over Spherical Subgroups: An Extension of Some of the Langlands Conjectures

Periods of automorphic forms over spherical subgroups tend to: (1) distinguish images of functorial lifts and (2) give information about L-functions.

This raises the following questions, given a spherical variety X=H\G: Locally, which irreducible representations admit a non-zero H-invariant functional or, equivalently, appear in the space of functions on X? Globally, can the period over H of an automorphic form on G be related to some L-value?

## The (Unreasonable) Effectiveness of (Hyperbolic) Geometry

## Automorphy Theorems II

## Applications

## p-Adic Analytic Continuation of Genus 2 Overconvergent Hilbert Eigenforms in the Inert Case

A well known result of Coleman says that p-adic overconvergent (ellitpic) eigenforms of small slope are actually classical modular forms. Now consider an overconvergent p-adic Hilbert eigenform F for a totally real field L. When p is totally split in L, Sasaki has proved a similar result on the classicality of F. In this talk, I will explain how to treat the case when L is a quadratic real field and p is inert in L.

## Niebur Integrals and Mock Automorphic Forms

## Behind the Music Forum

## Shape Fluctuations of Growing Droplets and Random Matrix Theory

We explain an exact solution of the one-dimensional Kardar-Parisi-Zhang equation with sharp wedge initial data. Physically this solution describes the shape fluctuations of a thin film droplet formed by the stable phase expanding into the unstable phase. In the long time limit our solution converges to the Tracy-Widom distribution of the largest eigenvalue of GUE random matrices.

## QUESTION SESSION ON GRASSMANNIANS, POLYTOPES AND QUANTUM FIELD THEORY

This is a continuation of Tuesday's talk.